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Chapter 1

INTRODUCTION

The training of industrial workers will be one of the

most challenging issues facing American industry during the

coming years. There is a growing need to provide effective

job training for workers at all levels of technology.

Unfortunately, most corporate training programs have

neglected to incorporate existing cognitive theory into an

overall training strategy. Furthermore, as increasing

automation reduces the number of pure manual tasks,

cognitive-based tasks such as system monitoring and decision

making will become more common.

Problem Statement

One of the biggest problems facing training researchers

today is the tendency for high level technology to suddenly

appear in the workplace ahead of any overall plan for worker

training. In particular, technology such as automation,

robotics, and artificial intelligence has been here for

years without adequately addressing the issue of operator

training. While many of these systems are relatively new

and evolving, even traditional tasks such as visual
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inspection can benefit from a more "cognitive' based

approach to training. Such an approach focuses on the

internal mental processes of human learning rather than only

on the output recorded in performance measures. The term,

"cognitive skill component," will be used to describe those

mental units of human information processing that can be

experimentally manipulated to change task performance.

Previous research on training human monitoring behavior

concentrated primarily on the performance benefits of

knowledge of results (KR) and stimulus cueing (Adams and

Humes, 1963; Colquhoun, 1975). While spurring a large

volume of research in these two areas, these early studies

could not accurately "model' monitoring performance beyond

the conditions in the original experiment. A model must

have predictive power for future performance under

conditions not explicitly stated beforehand. The strength

of a model lies in its generalizability to new situations

which increases one's confidence in understanding the

underlying components of behavior. A cognitive model is

vital to understanding and training human monitoring

behavior.

Since the 'actions" in human monitoring are primarily

covert, and sensitive research studies difficult to design,

there is a tendency to view monitoring tasks as inherently



3

low workload, requiring simple yes/no decisions, and easily

trainable through repetition. The workload issue is

especially deceiving since, although the number of "signals'

(e.g., product defects) is usually low, it may be the number

of opportunities for a signal that drives the workload

demands of a task. Additional experimental evidence is

required before any of these "assumptions* concerning human

monitoring behavior should be allowed to influence training

decisions.

Visual inspection is a special type of system

monitoring which has been an important part of the

industrial work environment for many years. Only relatively

recently, however, have the underlying learning processes

involved been studied. Wang and Drury (1987) made one of

the first attempts to evaluate the mental demands of an

inspection task. Their method, which involved evaluating

the relationship between pretested cognitive factors and

inspection performance, identified the specific attributes

of "attention* and 'judgement" as important factors in the

search and decision components of inspection. In modeling

inspection behavior, these attributes provided a high level

description of the underlying mental processes used in

inspection. Further refinement of the model will begin to

identify the lower level components which can be manipulated
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in training. Their work, together with others (e.g.

Embrey, 1979) , has created a long-needed research interest

in cognitive based training for inspection.

Background

Visual Inspection Performance

Product inspection is one of the most critical areas to

consider for improving industrial quality control. Although

consumers may demand defect-free products (Moll, 1976),

perfect performance is not possible with human inspectors

(Drury, 1982). Automation can eliminate the motivational

and bias problems of human inspection, but it cannot exceed

the superior decision-making capabilities of the human

observer across a wide range of targets. The large trained

workforce available also insures that human inspection

remains an integral part of any future quality control

program.

The most cost effective improvements in human

inspection performance logically stem from modifications in

training. Since most inspection tasks consist of search

followed by decision making, the only way to isolate

decision making during training is to eliminate the search
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requirement. The task learning literature has discussed

training for inspection (Embrey, 1975, 1979; Czaaa and

Drury, 1981) , but these studies have emphasized only the

overall strategies for training inspectors, not the

cognitive skill components needed to develop appropriate

training techniques. A basic understanding of these

components is essential for developing a useful model of

inspector decision-making behavior.

There is general agreement among both quality assurance

people and behavioral scientists concerning the structural

aspects of inspection. Harris and Chaney (1969) identified

the basic elements of visual inspection as interpretation,

comparison, decision making, and action. A more detailed

model of the perceptual-decision processes occurring during

a series of inspections is illustrated in Figure 1 (Adams,

1975). In this model, inspector decision making is based

on, among other things, perceived defect probabilities and

payoffs stored in memory. While describing inspector

decision making at a very general level, this model also

represents some of the cognitive factors which affect

inspector performance. Specific training manipulations can

now be defined and tested to improve inspector performance.



A correctness pobilties CnetVolues
ofdcso fof values and costs

DecisionDecision
to Ys bevainto accept or Rejectio

f 

tof

Figure 1. Perceptual-Decision Processes Occurring During
Inspection. Source: Adams, (1975)
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Despite such models, there is still relatively little

understanding of the cognitive abilities that make a good

industrial inspector. Research has shown that there are

large differences among people in their ability to perform

visual inspection tasks. In a study of machined parts

inspection performance (Harris and Cheney, 1969) , the best

inspector observed detected four times as many sample

defects as the poorest inspector. Personnel selection tests

try to compensate for this disparity by trying to provide

the best match possible between a potential worker and a

given job (Harris, 1966). Since it is not possible to be

certain of pre-selecting the best workers, training is

required to bring job performance up to some criterion

level. Learning on the job is one way to train industrial

inspectors; however, such an approach is reasonable only if

there is a good chance to learn from experience. Time on

the job alone is not a good predictor of performance. For

example, measures of inspection performance obtained under

controlled conditions showed no differences in defect

detection for inspectors with only 2 months experience

compared to inspectors with 48 months of experience (Thresh

and Frerichs, 1966). In addition, the effectiveness of

industrial inspectors is often exaggerated. It is common

for inspection performance to range from fewer than 30% mean
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defects detected for complex items to no more than 80% for

the simplest ones (Harris, 1966). Clearly, visual inspection

requires a systematic approach to skill learning similar to

other formal training programs.

The effectiveness of training can be evaluated by

focusing on several aspects of the learning environment,

although performance measures are by far the most dominant.

Since the ultimate objective of training is performance

improvement, it is not unusual to monitor training progress

through measurable changes in performance. KR was

frequently mentioned as a necessary condition for efficient

learning (Embrey, 1979). Studies have documented the

usefulness of KR in improving inspection performance, but

timely and relevant KR is unusual in the actual inspection

environment. In addition, other steps such as obtaining

supervisor and trainee motivation, identifying training

needs, developing training programs, and evaluating their

effectiveness are also important in any learning strategy.

The basic task of the industrial inspector is

straightforward: to search a prespecified area, compare each

event with one's mental "defect' model, make a decision on

its acceptability within established quality limits, and

take some kind of action based on the decision. It is a

much more complex issue, however, to be able to completely
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predict inspector performance from known parameters.

An exact model of human inspection behavior has not yet been

developed, but it is now possible to avoid accepting

unrealistic assumptions of operator performance and to

predict performance changes based on the effects of many

inputs to the human inspector (Drury and Fox, 1975). Both

search models and decision-making models, developed from

human engineering data and theories, display a certain

amount of predictive and operational utility. In addition,

cases of prolonged periods of inspection also require

vigilance models to predict performance.

Vigilance Behavior

The length of the inspection period is an important

factor in predicting overall performance. Many studies have

clearly shown that defect detection declines as a function

of time (Mackworth, 1964). This so-called 'vigilance

decrement" represents a general deterioration in performance

during extended monitoring tasks. This decline is

quantifiable in terms of both a decrease in the number of

signals detected and an increase in response latency. The

deterioration can be rapid, with drops as much as 40% in 30

minutes reported (Fox, 1975) . Although some researchers

maintain that the vigilance decrement is a laboratory
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artifact (Smith and Lucaccini, 1969), sufficient industrial

evidence exists to justify concern (Poulton, 1973). Fox

(1975) recommended frequent rest breaks and job enlargement

as two techniques to reduce the vigilance effect.

While the causes of the decrement are largely unknown,

investigators have started to consider the cognitive demands

of vigilance behavior. Williams (1986) suggested that

inadequate training and taxing information processing

demands are among the possible sources of the decrement.

Inadequate training results from the failure of operators to

adopt a stable response criterion for judging items as

'defects' or "nondefects" prior to testing. Operators who

were initially over responsive with signal reports gradually

decreased their frequency of reported signals to correspond

more to the actual frequency with which signals are

presented. This probability matching strategy is the result

of both training and feedback on the event sequence

structure. On the other hand, high processing demands

brought about by memory load and time pressure (Parasuraman,

and Davies, 1976) also reduced observer sensitivity.

Williams (1986) examined vigilance performance while

compensating for the effects of both these proposed sources

of error. The results indicated that the training scheme

for stabilizing response bias by using a probability
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matching strategy prior to testing was successful; however,

sensitivity continued to decline with event rates as low as

20/minute. This is evidence that the 24/minute event rate

cutoff between high and low event rates (Parasuraman and

Davies, 1976) needed revision. Although the role and extent

of vigilance effects during visual inspection are not

completely known, the scientific study of the factors will

benefit training for both vigilance and inspector behavior.

Inspection Performance
Measures

Before developing training techniques or learning

strategies for visual inspection, sensitive and relevant

performance measures are required. The three primary

dependent measures used in vigilance research included

correct detection rates, false alarm rates, and response

latencies (Davies and Parasuraman, 1982). While false alarm

rates were only reported sporadically, it was not until the

application of decision theory that a satisfactory way of

combining these two measures became available.

Correct Detections

Correct detection of defects is the most frequently

used measure of inspector sensitivity. However, while
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detecting defects is the prime objective of inspectors in

general, it confounds inspector sensitivity with decision

bias. For example, an inspector who is completely ignorant

of the differences between defects and nondefects can,

nevertheless, achieve 100% defect detections by responding

positively (Cdefect') on every trial (Davies and

Parasuraman, 1982). The inspector, in this example, was

biased to respond *defect' more often than "nondefect' on a

given trial. Without a measure that also accounts for

decision bias, inspector sensitivity is easily

overestimated.

Likewise, studies which only used the number of missed

signals or just false alarms to measure performance also

suffered from the same inability to account for response

biases of human inspectors. It wasn't until the development

of Signal Detection Theory that both sensitivity and

response bias of inspectors could be separately analyzed.

Signal Detection Theory (SDT)

Most visual inspection tasks consist of search followed

by decision making. In order to study the effects of

training on inspector decision making, it is necessary to

either completely account for observer biases in a search

model (Grindley and Townsend, 1970) or minimize, to the
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greatest possible extent, the requirement to search. When

the latter condition has been met, it is possible to use

SDT to model the decision-making component of visual

inspection (Wallack and Adams, 1969; Drury and Addison,

1973; Drury, 1975). The SDT model was first applied to

separate out the physical and psychological aspects of

signal detection.

All human information processing begins with the

detection of some stimulus event in the environment. This

event may be a change in brightness of a light source, a

change in frequency of an auditory signal, a tumor on an X-

ray, a defect on a circuit board, or an enemy target on a

radar scope. Signals are always detected against a

background of noise which produces observer errors. Perfect

detection performance is unusual and errors often involve

more than just a lack of sensory acuity (Lachman, Lachman,

and Butterfield, 1979).

During the years prior to the 1950s, many

psychophysicists were busy measuring the detectability of

signals as a function of intensity for various modalities.

The classic threshold model was developed during this time

for specifying those signal intensities at which the subject

correctly detected a certain percentage of signals (usually

50%) (Van Cott and Kinkade, 1972). A psychometric function
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was generated by plotting signal intensity versus percent

correct responses for various types of signal input.

Interestingly, different functions could be obtained by

simply giving different instructions to a single subject

such as, a) "Be sure not to miss any signals,' b) 'Just

detect as many signals as you can without worrying about

it,* or c) "Be absolutely sure a signal is present before

responding" (Van Cott and Kinkade, 1972). These

instructions can change a subject's threshold for a

particular stimulus intensity. As a result, the conceptual

meaning of "threshold' as purely a function of the physical

properties of both the stimulus and the observer must be

altered. A more subjective component must also be included

to reflect, among other things, instructions given and the

response bias of the observer. Therefore, a more sensitive

model is needed to account for both these components of

human signal detection.

The SDT model was developed to separate the relative

effects of observer sensitivity and response bias on

detection performance (Green, 1960; Swets, Tanner, and

Birdsall, 1961). This model assumes that there are two

stages of information processing during signal detection

tasks: 1. Sensory information is accumulated concerning the

presence of a signal, and 2. a decision is made whether
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this evidence constitutes a signal or noise (Wickens, 1984).

By dividing the world into discrete states (signal and

noise) and allowing the observer only two responses (yes or

no) , the set of all possible outcomes can be specified in a

2 X 2 matrix (see Figure 2).

STIMULUS

SIGNAL +
NOISE NOISE

(NONDEFECT) (DEFECT)
------------- -- 4----------------------

"YES":FALSE ALARM HIT
P(Y/N) P(Y/SN)

RESPONSE +--------------------------

'NO* :CORRECT ACCP: MISS
P(N/N) P(N/SN)

------------- -- +----------------------

Figure 2. SDT Decision Matrix

Visual inspection studies have often conceptualized the

inspection task in terms of a human observer's ability to

detect signals embedded in noise (Wallach and Adams, 1969).

Though sometimes criticized for being too nonrepresentative

of real industrial-based tasks, SDT has been used to analyze

inspector performance both in the laboratory (Embrey, 1975)

and in the field (Drury and Addison, 1973). SDT considers

the quality control inspector to be a statistical hypothesis

tester, gathering data from each observation and deciding if



16

a particular item was sampled from a distribution of defects

or a distribution of nondefects. Due to continuous

variation in noise underlying both these distributions, some

defects will be missed and some nondefects will be judged to

be defects. The inspector's sensitivity, or d' , is defined

by a joint consideration of missed defects and falsely

judged defects (Green and Swets, 1966):

(1) d' = (ud - u,) / o

where: d' = Inspection Sensitivity
u = Mean of Defect Intensity Distribution
u = Mean of Nondefect Intensity

Distribution
= Standard Deviation of Intensity
Distribution

This measurement theory assumes that the variances of

the two intensity distributions are identical, and that the

evidence distribution of defects and nondefects are both

normally distributed. When these assumptions are not met,

additional adjustments to the data may be necessary to avoid

confounding sensitivity and response bias. Several

nonparametric measures were discussed by Green and Swets

(1966). While the concept of an evidence distribution is

somewhat abstract, this is usually meant as random

variations in product quality along the inspected dimension,
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as well as noise within the inspector. For example, if one

is judging whether a portion of a circuit board has been

scratched, there will be a distribution of small scratches

(in width, length, and depth) on a non-defective board. The

defective board will also contain a distribution of

scratches, but the mean width, length, and depth of

scratches will be greater. The second performanue parameter

is C, or the inspector's response criterion (bias) in making

a decision. j3 is one of several ways to represent the

relative position of one's criterion along the evidence

dimension. It is calculated a- likelihood ratio of the

defect over nondefect probabilities for a particular

criterion:

(2) 2 = yd/y. where:

2 = Inspector Response Criterion

y4 = Ordinate of Defect Intensity Distribution
at Inspection Decision Criterion

= Ordinate of Nondefect Intensity
Distribution at Inspection Decision
Criterion

If an inspector behaves in accordance with SDT, d',

which is based on the effective signal strength or

discriminability of the defective items, should remain

constant over the inspection period. 2, on the other hand,
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should vary depending on the defect probability and

perceived values and costs of decisions at particular points

in time (Drury and Addison, 1973) . 2 and d' are assumed to

be independent measures of visual inspection performance.

Figure 3 illustrates the theoretical probability density

functions for the evidence variable of events classified as

either signals (defects) or noise (nondefects).

NOiSE

)I )1 2

CRITERION
I -

N0"I "YES"

Figure 3. Hypothetical SDT Distributions. Source: Van Cott
and Kinkade, (1972)

SDT, as a normative model, can also prescribe the

optimal value of 2, known as S', which maximizes decision

values while minimizing error costs (Green and Swets, 1966).

Both defect probability and the values and costs of decision
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outcomes must be represented in a model of B performance.

Z' is computed by (Swets, Tanner, and Birdsall, 1961):

(3) 2- = [P(ND) * (VCA + CFA) ]/[P(D) * (CMISS + VHIT)]

where: P(ND) = probability of a nondefect
VCA = value of a correct acceptance of a

nondefect
CFA = cost of a false alarm
P(D) = probability of a defect

CMISS = cost of a miss
VHIT = value of a hit

If the values and costs of decision outcomes are the same

(symmetrical payoff matrix) , the equation for 2 is reduced

to:

(4) 2' = P(ND)/P(D)

where the two probabilities are those that actually exist

during the inspection task.

An inspector may adopt a liberal criterion (small 2)

which maximizes both correct and false detections, or he may

adopt a more conservative criterion (large B) which

minimizes both of these. The degree of inspector optimality

can be assessed by computing the absolute value of the

difference between an inspector's actual B and 2- for a
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given defect probability and payoff matrix:

(5) Degree of inspector optimality = :2 - 23:

Studies have shown that observers are generally

sluggish" in shifting their Z's as a result of changing

probabilities and payoffs (Green and Swets, 1966). For

example, observers tend to be less liberal then they should

be for small 2' values, and less conservative then they

should be for large Z3 values (Peterson and Beach, 1967).

This inherent 'conservatism' may be the result of an overall

inability of human observers to accurately combine the

diagnostic meaning of several pieces of data when revising

probabilities (Edwards, 1982).

In real world applications, operators do shift their

2's in the required direction in response to changing

probabilities, although not as far as dictated by the

2' model. Drury and Addison (1973) found that quality

control inspectors examining sheet metal for defects will

adjust their 2's according to the estimated defect rate of

the batch. In addition, Wickens (1984) reported the results

of a study which applied the SDT model to the air traffic

controller's task of deciding whether the merging paths of

two aircraft signal a collision (Bisseret, 1981).
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Controllers lowered their 2 (became more willing to specify

a correction) as the difficulty of the task increased.

Furthermore, experts were more likely to set their 2 at a

lower value than trainees. The author suggested that

trainees are more uncertain about how to implement a

correction and, therefore, more reluctant to call for a

correction. Thus, response criterion training could improve

performance of trainees in the air traffic control

environment.

Wallack and Adams (1969) pretrained industrial

inspectors to detect nicks in stranded electrical

conductors. Four levels of product percent defective were

used with d' and B values calculated for each. The greatest

difference between 2 and Z' occurred at the lowest percent

defective level (5%) . In addition, two distinct populations

of inspectors in the 5% defective group could be

distinguished on the basis of Type 1 and Type 2 errors.

Although there are problems associated with this type of

joint laboratory-industrial environment research (Adams,

1975) , the benefits of validating these models in the actual

inspection workplace outweigh any methodological cost.
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Response Latencies

The amount of time it takes an inspector to make a

decision is also an important measure of performance. Buck

(1966) reported that there was evidence of an inverse

relationship between detection rate and latency; observers

who detected more defects also made faster decisions. This

result dismissed an alternative explanation that greater

defect detection is due to longer observation times (speed-

accuracy tradeoff). Thus, if some central process called

"vigilance" mediates performance, then detection rate and

latency may be related if both reflect changes in vigilance

(Davies and Tune, 1970). In addition, if higher response

times also reflect increased levels of uncertainty, then

inspector latency represented changes in response criterion

as well as changes in sensitivity.

Training for Visual Inspection

Traditionally, training research has focused primarily

on motor learning rather than the perceptual skills required

in product inspection tasks (Welford, 1968). Perceptual

learning involves covert mental processes which are

sometimes inaccessible to the trainee. As a result, it is

difficult to operationalize these cognitive variables in an



23

experimental setting to measure the effects of training.

Without these data, it is difficult to establish a link

between theoretical models and the actual inspection

environment.

Training Effects on

SDT Parameters

Plagued by many of the same problems encountered by

those studying human monitoring behavior, visual inspection

tasks have been analyzed using SDT where the effects of

observer sensitivity and decision bias can be separated and

analyzed (Baker, 1975). While the SDT model is a useful

tool for understanding inspection performance, there is

still scant research on the training effects in the model

parameters. Most studies which have investigated the

effects of training on inspection performance have focused

on enhancing the inspector's sensitivity through KR or

cueing techniques (Embrey, 1979). Equally important,

however, is the impact of training on the response criterion

set by the inspector during the actual task. As measured by

2, the response bias provides evidence for the accuracy and

completeness of an inspector's internal model of the
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process. Any research attempt to model inspector decision

making must integrate these two characteristics of

inspection performance.

The first, observer sensitivity, is a function of such

factors as visual acuity, discriminability of defects and

nondefects, and the observer's knowledge of defect

characteristics. The inspector's response criterion, on the

other hand, reflects an individual's rule for making

inspection decisions based on the a priori defect

probability and the values of costs of various decision

outcomes. In addition, inspector performance can also be

assessed in terms of an individual's reaction to changes in

the defect probabilities occurring during the task itself.

The innate conservatism of an observer, together with

his/her limited sensitivity, can produce subjective

estimates of defect probabilities which lag behind actual

probabilities. Based on these observations, Embrey (1975)

recommended three training objectives for visual inspection:

1. Inspector sensitivity should be maximized for a

given defect.

2. The response criterion adopted by the inspector

should be compatible with the ongoing defect probability and

the costs and values associated with the decisions.

3. The inspector should be able to modify his/her
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response criterion in accordance with changes in defect

incidence or the costs and values of decisions.

TraininA and Skill Retention

The best way to judge the effectiveness of training

is to measure the amount of time with which a certain level

of skill is maintained on a task. The retention interval,

here, refers to the period of time after training during

which subjects do not perform the task. This can occur, for

instance, when an inspector is rotated through several

stations where substantially different defects must be

detected. Several factors have been identified which

influence the retention of a particular skill.

Training Duration

The effects of training duration were explored in

several studies cited by Hagman and Rose (1983). Subjects

who performed more repetitions of a 52 step procedure

involving testing of alternator electrical output had faster

performance times and less errors immediately after training

and two weeks later. In the second study, subjects who were

trained to a *mastery" criterion level for assembly/

disassembly of an M-60 machine gun required fewer trials and

made fewer errors to relearn the task to proficiency (error
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free performance) after eight weeks than a comparable group

of subjects exposed to half as many trials. In the third

study, a 'mastery' subject group trained to a criterion of

three consecutive error-free trials of boresighting and

zeroing the main gun of the M6OAl tank retained the

procedural skills better (based on the number of errors

committed on the first trial after retention) than a

comparable group trained to a criterion of one error-free

trial.

Naylor, Briggs, and Reed (1968) also varied the

duration of training for subjects learning to perform a

three dimensional tracking task and a procedural secondary

task. Subjects who spent more time in training had fewer

errors and performed better at both levels of the secondary

task after both one and four weeks of retention.

Distribution of Training

Another factor that affects training is the timing of

additional trials. Hagman and Rose (1983) reported the

results of a study where two groups of reservists were

trained in assembly/disassembly of machine guns. One group

received extra repetitions during initial training while the

second group received their additional trials after four

weeks. Both groups committed the same number of errors and
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required the same number of trials to attain proficiency

when tested eight weeks after initial training.

Massed versus spaced repetitions of training trials is

another way of varying distribution of training. Hagman and

Rose (1983) reported the results of a study where two groups

of subjects were trained on a task of testing alternator

output using three massed or three spaced repetitions prior

to retention testing two weeks later. The massed training

group took longer and committed more errors than the spaced

training grop. The advantage of spaced repetitions of

training is a fairly consistent result throughout the

training literature.

The Retention Interval

Roehrig (1964) reported near perfect retention for

subjects who were able to perform a simple balancing task at

pre-retention performance levels after not practicing for 50

weeks. Performance continued to improve with additional

trials as though there had been no retention interval at

all.

Fleishman and Parker (1962) trained two groups of

subjects on a complex compensatory tracking task, one group

was trained by rote practice without feedback while the

second group received instructions and feedback on
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performance. Both groups were tested at various retention

intervals ranging from 1 to 24 months. Only feedback

trained subjects showed no performance decrement for any

retention interval. The authors concluded that the

important fact in retention was not the type of training

administered but the level of proficiency attained. Naylor,

Briggs, and Reed (1968), on the other hand, reported

significant reductions in tracking performance for a four

week retention interval compared to one week.

Retention factors in visual inspection have not been

adequately explored. Most research available addressed

retention during motor rather than perceptual learning.

Inspector training must be evaluated from the standpoint of

retention of skill as well as performance measures after

training. Despite the importance of retention factors

(especially long-term retention) to both motor and

perceptual skill learning, little work is being done and few

new ideas generated (Adams, 1987).

Task Difficulty

and Inspector Training

Overall task performance can usually be improved by

first training workers on smaller components of the task

(Wightman and Lintern, 1985; Schneider, 1985). Therefore,
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deciding which components should be trained and in what

order become important considerations. One method for

selecting the task components to be trained is based on

relative workload effects. According to a resource view of

attention (Moray, 1967; Kahneman, 1973) , skilled task

performance requires the investment of limited processing

resources which must be allocated in greater amounts as the

demands of the task increase. Within this context, workload

is related to the amount of processing resources demanded by

a task compared to those supplied by the operator. The

limited availability of these resources combined with their

multiplicity (Wickens, 1980) can have serious implications

for training complex skills. As the difficulty of a task

increases or as concurrent tasks compete for the same

processing resources, the higher the task workload and the

more resources needed to maintain performance. On the other

hand, increasing the difficulty of some tasks does not

increase workload and the further investment of resources

benefits neither performance nor learning. The first type

of task, known as *resource limited,' forces the trainee to

invest more resources as task difficulty increases,

improving performance. The second type, *data limited,

describes tasks whose performance remains unchanged despite

increasing task difficulty. Mane and Wickens (1986)
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hypothesized that increased levels of task difficulty will

facilitate learning when these increases are both resource

loading and derived directly from task learning.

Conversely, when workload stems from the need to perform

another task or aspects of a task that do not benefit

learning, the learning of that task component will suffer.

At first glance, this idea that training on high

difficulty tasks will improve post-training performance may

seem at odds with the principle of adaptive training, where

task difficulty is varied as a function of how well the

trainee is doing (Kelley, 1969). Under this approach, a

trainee would start out with a relatively easy version of

the task to be trained and then transferred to a more

difficult version once performance met some criterion level.

The assumption here is that there should be a positive

transfer from easy to difficult tasks. Mane and Wickens

(1986) stated that such positive transfer would occur when

the task is data limited. On such a task, increasing the

workload, and therefore the processing resources involved,

does not affect performance. On the other hand, resource

limited tasks, where performance improves as the amount of

processing resources increases, would experience positive

transfer from difficult to easy versions of a task.
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Therefore, the level of task difficulty is an important

factor to consider when designing training programs for

visual inspectors.

Training Inspectors'
Internal Models

Many complex human behaviors are thought to be guided

by an individual's 'internal" representation of the

environment. This representation can be described in terms

of an internal or mental model of some physical process or

activity which operators cft-i use as a basis for

understanding and predicting the response of a human-machine

system (Wickens and Kessel, 1979). Many have accounted for

important human performance changes in terms of certain

selected parameters of an operator's internal model.

Veldhuyzen and Stassen (1976) observed that all forms of

human behavior require some internal representation of the

system being observed or controlled. For example, human

monitors continually compared their internal model to the

actual system until the observed difference exceeded some

subjective criterion and a 'failure' is detected (Wickens

and Kessel, 1979).
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Veldhuyzen and Stassen (1976) acknowledged that

predictions based on an internal model were not always

accurate since:

1. The structure of the internal model may differ from

the structure of the system to be controlled or monitored.

2. The internal model parameters may differ from the

parameters of the system to be monitored or controlled.

3. The system can only be perceived with restricted

accuracy.

4. Disturbances are often not known exactly.

Bayesian decision theory has been used to formalize and

externalize a decision maker's internal model; however,

Tversky and Kahneman (1974) cautioned that people use

nonoptimal, stereotypical models of probabilistic processes

in estimating the likelihood of events. These inherent

inaccuracies and limitations of a human operator's internal

model may be used to establish important model parameters

needed in a specific training environment.

Although few have measured and manipulated internal

model parameters during training, numerous investigations

focused on the more generalized topic of training and

decision making performance. Wickens (1984) described three

types of decision-making aids that have been shown to be

useful. First, make the decision maker aware of unconscious
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biases that may be influencing performance. For example,

Rouse and Hunt (1981) succeeded in improving diagnostic

performance by training subjects to extract information from

the absence of failure information. Second, provide

accurate and timely feedback to decision makers so that they

are forced to judge and evaluate the success or failure of

their rules. Tversky and Kahneman (1973) recommended that

decision makers should be trained to encode events as

probabiiities rather than frequencies, since probabilities

inherently account for both positive and negative evidence.

Finally, the correlational structure existing in the cues

that represent a certain hypothesis should be emphasized.

Humans have shown a consistent ability to integrate cues

when correlations are known ahead of time.

Recent work on internal models has been concerned with

extremely complex physical systems or with behavior in

ill-defined tasks such as how an electrical circuit works

(Gentner and Stevens, 1983). The internal model is also

a hypothetical construct which can account for several

aspects of process control behavior. First, an internal

model is thought to guide the display sampling and scanning

of multifunction systems (Moray, 1981). It can also

formulate plans of action and translate intended goals into
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present control actions. Finally, the internal model forms

the source of the operator's expectancies of the

relationships between variables.

Kieras and Bovair (1984) investigated the role of

internal models in learning to operate a relatively simple

device. Their objective was to demonstrate that providing a

device model during training can result in faster learning

and better retention of operating procedures. The results

showed that the device model trainees learned the procedures

sooner, executed them faster and retained them more

accurately than the no-model trainees. Device model

trainees were also more able to infer operating procedures.

This advantage was due to the specific configuration of

components and controls present in the model and not to the

motivational aspects, component descriptions or general

descriptions provided by the model. These results supported

their recommendations concerning when and what kind of

device model information should be taught to operators;

however, no details on the structure of the operator's

internal device model were provided.

Although the concept of a internal model may seem

straightforward for learning to operate an external device,

it is more difficult to apply to a cognitively complex task

such as visual inspection. In detecting a visual target, it
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is hypothesized that an inspector uses some kind of internal

model of the inspection environment to make decisions. For

example, one way to conceptualize this model is in terms of

an SDT framework where both specification (as measured by

d') and probabilistic (as measured by 2) information would

be important components. As already discussed, the SDT

model is a useful tool, not only for describing inspector

performance in terms of d' and 2, but also for prescribing

normative (optimal) behavior for a given set of external

factors. Training for inspection, therefore, can be viewed

as either 'providing* a valid internal model to trainees or

"optimizing' the existing models of current industrial

inspectors. The discrepancy between actual and optimal 2

can monitor the progress of internal model development

during training or to assess the quality of an inspector's

internal model at the end of training. This type of

analysis is also useful for understanding the distinction

between novice and expert performance. The evolution of

knowledge from novice to expert levels begins during

training and is logically related to the development of an

inspector's internal model.
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Knowledge of Results (KR)

As a common technique for promoting perceptual learning

(Annett, 1966) , KR is knowledge received relating to the

outcome of one's responses (Wiener, 1968). Commonly used

during vigilance tasks (Antonelli and Karas, 1967; Warm,

Epps, and Ferguson, 1974), KR has also been used as an

effective technique for providing defect specification and

distribution information during visual inspection (Drury and

Addison, 1973; Embrey, 1975). One's increased sensitivity

resulting from KR has been ascribed to either increased

motivation or enhancement of defect knowledge (Embrey, 1979;

Mackworth, 1964). In addition, higher sensitivity may also

allow more optimal adjustment of 8 by providing more correct

opportunities from which to estimate the true defect rate

(Williges, 1973). Thus, KR may allow the development of a

more optimal response strategy as defect probabilities

change. To better address the scope of KR effects, Embrey

(1975) presented KR and several combinations of signal

probabilities to inspectors detecting changes in brightness

of a central disk. Although KR increased subjects' d',

independent of signal probability, subjects' B's were more

optimal in the NO-KR condition as KR lowered 2 more than

predicted. While the author did not try to interpret this
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result in terms of cognitive theory, it is apparent that KR

had inconsistent effects on inspection performance. In

order to reconcile such results, a cognitive model of KR

utilization will be developed to describe and explain KR's

influence on decision making during inspection.

Z Variability

One possible explanation for KR's influence on

sensitivity is in terms of changes in the variability of an

inspector's response criterion (Drury, 1988). For example,

Figure 4 shows a Receiver Operating Characteristic (ROC)

curve (Green and Swets, 1966) with two different criteria,

a, and B2. If an inspector divides his time equally between

each criterion, then the expected value of his criterion

will be at some point along the line joining 2, and 22. Any

point along this line represents a lower sensitivity than

either B, or Z2. Therefore, the lower the criterion

variability (2, or 22) , the higher the apparent sensitivity.

If it is assumed that KR provides an inspector with the

knowledge of his own response criterion, then it's possible

he uses it to reduce variability. As a result, KR's increase

in sensitivity would become an artifact and not the result

of information transfer.
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To test this hypothesis, the hit rate and false alarm

rate for each block were plotted, giving three points on the

ROC curve (see Figure 4). The smallest sum of the straight

line distances connecting these three points on the ROC

curve was calculated to represent BVAR. In Figure 4, BVAR

is represented by the straight line distance connecting 2,

and 23 plus Bz and a=. ROC points spread out along the

curve, representing high BVAR, also had large intra-point

10

CL
0.

0 PFA I

Figure 4. Theoretical ROC for 2 Variability
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distances; those points packed more closely had lower BVAR

and smaller intra-point distances. This measure was used in

Experiment 1 to test whether inspector sensitivity was

related to 2 Variability.

A Model for KR Utilization

Most decision-making models for visual inspection have

been based on normative theory borrowed from the

mathematical and physical sciences (Drury, 1975). Many of

these models included feedback to the decision maker.

However, the underlying cognitive processes that manipulate

and utilize this feedback are usually not represented. An

understanding of these processes is vital to accurately

model the decision making behavior of visual inspectors.

Figure 5 illustrates a cognitive model for KR utilization

during inspection based on the research of Sternberg

(1967,1969), Wallack and Adams (1969), and Adams (1975),

among others. In this model, inspector knowledge,

consisting of defect characteristics and probabilities, as

well as the perceived values and costs of decisions, is

assumed to be represented in a veridical format within

memory which preserves spatial information (Embrey, 1979).

The ability of the inspector to estimate the respective
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DEFECT NONDEFECT

Figure 5. Initial KR Utilization Model
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means of both the defect and nondefect distributions is

represented in the model as inspection specification

knowledge. On the other hand, the ability to estimate

defect and nondefect probabilities and the actual costs and

values of decisions is represented as inspection

distribution knowledge. Based on this interpretation, d'

reflects the level of specification knowledge and 2 reflects

the level of distribution knowledge.

KR can influence inspector knowledge directly by

confirming or disconfirming hypotheses about the

characteristics and distribution of defects versus

nondefects. Defect characteristics are learned better with

KR since inspectors are now aware of errors on specific

trials. Each error forces the inspector to update his/her

defect model resulting in higher performance compared to no

KR with fewer updates. KR also provides evidence of the

event sequence structure during an inspection period which

can be used to estimate defect probabilities and adjust B.

Overall inspector performance, therefore, should be enhanced

via KR both in terms of sensitivity and response bias, and

should be independent of the relative difficulty of the

inspection task. In addition, during sudden shifts in the



42

defect prevalence (e.g. a process breakdown causing an

increase in defects), inspectors should adjust 2 more

optimally with KR due to superior defect distribution

knowledge. These predictions will be tested in the

following series of experiments.
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Chapter 2

OBJECTIVES AND HYPOTHESES

Objectives

The overall goal of this research is to develop a model

of KR utilization for decision making during visual

inspection. To obtain sufficient evidence to support such a

model, three experiments with the following objectives were

conducted.

Experiment 1

1. The effects of KR on inspector sensitivity,

response bias, and optimal 2 placement both within and

between defect probability conditions.

2. The effects of task difficulty, sequence of

difficulty levels, and defect probability on inspector

performance.

3. The relationship between d' and other dependent

measures, including B variability, both within and between

inspection groups.
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Experiment 2

1. The relative effects of True versus False KR on

both inspector sensitivity and response bias across

specified payoff and probability conditions.

2. The effects of changing values and costs of

decision outcomes on inspection performance.

3. The effects of increasing defect probability on

inspection performance.

Experiment 3

1. The effects of training with KR on inspection

sensitivity and response bias when KR is no longer

available.

2. The effects of task difficulty during training on

subsequent inspection performance.

3. The effects of increasing defect probability

during training and subsequent phases on inspection

performance.
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4. The effects of inspector training on post-test

performance both immediately after training and 3 weeks

later.

Hypotheses

Based on the previous objectives and the initial model

already developed, hypotheses were generated which predicted

the effects of the manipulations on the dependent variables

used in the three experiments.

Experiment 1

Inspectors given KR should have:

1. higher sensitivity as measured by d'.

2. more optimal response criteria as measured by

3. faster RT's.

compared with NO-KR inspectors.

Decreasing discriminability of defects (higher

difficulty) should result in:

4. lower d'.

5. lower 2.

6. slower RT's.
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Increasing defect probability should:

7. have no effect on d'.

8. decrease B.

9. have no effect on RT.

Overall inspector d' should be:

10. unrelated to 2.

11. unrelated to B-B'2.

Inspectors performing the Low to High Defect

Discriminability Sequence should have:

12. higher d's.

13. larger B-B'f 's (less optimal).

14. faster RT's.

compared with inspectors in the High to Low sequence.

Experiment 2

Inspectors provided with TRUE-KR should have:

1. higher d'.

2. lower -B'fl.

3. and faster RT's.

compared with either FALSE-KR or NO-KR inspectors.

Inspectors provided with FALSE-KR should have:

4. higher d'.

5. lower B-B .
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6. faster RT's.

than NO-KR inspectors.

Manipulating 2 by changing decision payoffs to

reinforce correct defect detections should result in:

7. constant d'

8. lower U3-B .

9. constant RT.

compared to changing defect probabilities.

Experiment 3

Inspectors trained with KR should have:

1. higher d'.

2. lower :-2*:.

3. faster RT's.

than their NO-KR counterparts during training, immediate

retention, and three week retention intervals.

Inspectors trained with KR and High Difficulty defects

should have:

4. higher d'.

5. higher 1-B .

6. faster RT's.

during immediate and three-week retention intervals.

These predicted effects are summarized in Table 1.
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Table 1. Summary of Predicted Effects of Experimental
Manipulations

-- - - - - -- --------- +-------------------------------------------------

I Contrast Dependent Variable
:EXP Difference

d' 1 3 -B: RT;
-- - - - - -- --------- --------------------------------------------------

KR- NO-KR +" ND - -

High -Low Difficulty + +

1 0.2 - 0.4 Probability ND + ND ND

Low to High - High to Low
Difficulty Sequence ND ND ND

-- - - - - -- ---------- +-------------------------------------------------4

TRUE KR - FALSE/NO-KR + ND -

2 Symmetric - 2X/9X
Payoffs ND + ND ND

0.2 - 0.4 Probability ND + ND ND
-- - - - - -- ---------- +-------------------------------------------------

Phase 1

KR - NO-KR + ND

High - Low Difficulty

Phase 1 - Phase 2
:3

KR - NO-KR + ND - -

High - Low Difficulty - - + +

Phase 2 --- > Phase 3 (No Significant changes)
(3 weeks)

---- s---- -------------------------------------------------

+ = positive difference between the two manipulations
- = negative difference between the two manipulations

ND = no difference
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Chapter 3

EXPERIMENT 1:
KNOWLEDGE OF RESULTS IN

VISUAL INSPECTION DECISIONS:
SENSITIVITY OR CRITERION EFFECT9

The overall objective of this experiment was to assess

the effects of both KR and task difficulty on the SDT

parameters as defect probability increased during visual

inspection.

Method

This section will highlight the major equipment and

personnel requirements for performing this experiment. The

experimental design is discussed with a detailed explanation

of the procedure.

Subjects

Twenty right-handed males, recruited from a local

newspaper ad, participated in this experiment. Each subject

was paid up to $5.00 per hour, including performance

incentive pay, for 1.5 hours of experimental time. All

subjects were screened for 20/20 or better corrected visual

acuity and ranged in age from 16 to 41 years.
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Apparatus

The visual inspection task was presented on an AT&T PC-

6300 personal computer located in the Industrial

Engineering/Human Factors Laboratory at The Pennsylvania

State University. The monitor used in the experiment was an

11.5' AT&T color monitor (model CRT3I8H) with EGA

capability, located 20 inches from the subject's eyes. A

mouse (Logitech Model No. P7-2F-AT) was used to record all

subject responses, using the two buttons on top of the mouse

as response keys. The intensity of the monitor was 16 foot-

lamberts with a contrast of 86%. Ambient illumination at

the task was 30 foot-candles.

Visual Inspection Task

An inspection task was created on the screen of the

monitor by mimicking well known work standards for circuit

board metallization scratches (Martin Marietta, 1981).

According to the work standards, a scratch across an etched

conductor on a circuit board is acceptable if more than half

the width of the conductor is left undisturbed (Martin

Marietta, 1981, p. 1-3). The required perceptual skill here

is a visual discrimination of distance, comparing the

relative width of the scratch with the width of a conductor.
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Figure 6 displays the analogous experimental task, which

required subjects to judge the length of line segments

(i.e., 'scratches") displayed on the screen. A line was

defective if it extended more than half way across the width

LEFT END
RANDOMIZATION RANGE

-206
HIGH DIFFICULTY

"-19 SD=20

"=212(LOW DIFFICULTY

X= 188

Figure 6. Visual Inspection Task

of the viewing area (i.e., *conductor') , and was

nondefective otherwise. The line segments were randomly

presented along the imaginary centerline connecting the two

vertical sides of the viewing area. Since the line segments

were always presented along this centerline, the inspection
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task did not require visual search but only addressed

inspector decisions. The relative horizontal position of

each line segment was varied from trial to trial by randomly

selecting the starting point for drawing the leftmost end of

the line within the range of 25% of the viewing area width.

Each line segment was presented on the computer screen

for 2 seconds. Subjects could respond during this 2-second

exposure time or any time during the five second interval

immediately following the removal of the line segment.

Subjects responded by pressing either the right-hand button

on the mouse for a defective line segment or the left-hand

button otherwise. If seven seconds passed without a

response, a miss was recorded, followed by the next line.

There was always a 2-second pause between the subject's

response and the presentation of the next stimulus. The

computer recorded responses and decision times for

subsequent analysis.

Experimental Design

Four fixed independent variables, with subjects

randomized, were utilized in this experiment, as schematized

in Table 2 and described below. Although generalizing

beyond the specific levels included here will be difficult,
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Table 2. Experiment 1 Design

+----------------------------4------------------------------4--------------------------

NO-KR KR
--------------- +------------------------

Discriminability
*Discriminability
:Sequence LO -- > HI LO -- > HI

Defect
Probability

-----------------------------------------------------

BLOCK I BLOCK II

LOW to HIGH 0.2 150 trials 150 trials

0.4 150 trials 150 trials

Ss=1-5 Ss= 6-10
+--------------------------------- - ----------------

BLOCK III BLOCK IV

:HIGH to LOW 0.2 150 trials 150 trials

0.4 150 trials 150 trials

Ss = 11-16 Ss = 16-20
--------------------------------- +--------------------

NOTE: All subjects within a block performed both LOW
and HIGH discriminability and 0.20 and 0.40 probability
conditions.
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the main intent is to study trends in performance from high

to low difficulty (and vice versa), from low to high

probability, and with KR or NO-KR using meaningful and

relevant variable levels.

Knowledge of Results

Half of the subjects received KR and half did not. KR

consisted of "right' or 'wrong' statements at the top of the

screen following each response. Summary accuracy and

monetary reward information were also provided after each

50-trial block in the KR condition. Instructions to

subjects in the KR condition also specified that the number

of defects could change between blocks. No such information

was given to those in the NO-KR condition.

Defect Discriminability

Manipulated within subjects, High Discriminability

defects had an average 6% length difference between the two

stimulus lines, based on 92% correct discrimination in pilot

testing. Low discriminability defects had a 3% length

difference, based on 75% correct discrimination in pilot

testing. Both of these discrimination tasks were greater

than a subject's expected threshold difference for line

length judgement (Ono, 1967).
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Discriminability Level Sequence

The order of discriminability levels described above

was counterbalanced to avoid any carry-over or learning

effects. Half the subjects started in the High defect

discriminability task then moved to Low discriminability

task, while the other half moved from Low to High

Discriminability.

Defect Probability

The number of defects presented during each 50 trial

block was always 10 (0.2 defect probability) in the first

block and 20 (0.4 defect probability) in the second block of

each discriminability condition.

Table 2 shows that KR and Discriminability Sequence

were between-subject experimental manipulations (nested

variables) , whereas defect discriminability and probability

were within-subject manipulations. Five subjects were

randomly assigned to each one of the four between-subject

conditions defined by KR and discriminability level sequence

(see Appendix A for complete description of statistical

model).
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Procedure

A subject initially observed 20 trials with the half-

way criterion line initially visible and held constant.

Next, practice was provided, using two blocks of 20 trials

(0.2 and 0.4 defect probability, respectively). Finally,

each subject repeated the above practice session with

performance recorded and evaluated to insure a performance

level of at least 90% and 70% correct for High and Low

Discriminability conditions, respectively. After training

was successfully completed, a subject was administered three

50-trial block replications at each of the two defect

probabilities. This was repeated for both Low and High

Defect Discriminabilities for a total of 12, 50-trial blocks

within each subject. Hit rate, false alarm rate, and mean

reaction time (RT) were recorded for each block. Values for

d' and 2 were derived from the above data for subsequent SDT

analysis. In addition, Z and :Z-Z': were calculated for

each inspection condition.

BVAR quantified 2 variability using the three

replication blocks as three points on the ROC. BVAR was

computed for each experimental condition and included in the

subsequent ANOVA and regression analyses.
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A bonus system insured a high level of subject

motivation during the inspection task. Subjects were

instructed that they could earn up to $3.60 in additional

pay for performing at a consistently high level. For the KR

condition, the bonus score was calculated on a block by

block basis as Bonus = [P(hit)-P(false alarm)]*$.30. In the

NO-KR condition, the bonus score was calculated after every

third block as Bonus = [P(hit)-P(false alarm) ]*$.90, but the

amount was not revealed to the subject until the end of the

experiment. A two-minute rest period was administered

between each block of trials. Each subjects was paid at the

end of his session.

Results

To obtain sufficient numbers of missed and false

defects, the three blocks of 50 trials (150 trials total)

were pooled within each discriminability condition for d'

and 2 computations. SDT analysis requires sufficient

numbers of errors for accurate analyses, and pooling these

data ensured this, at the expense of loss of resolution.
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Hit Rate (HR) and
False Alarm Rate (FAR)

Before deriving the parameters for the SDT model, an

analysis was performed on HR, or probability of correctly

calling a defect, and FAR, the probability of falsely naming

a non-defect. Reported statistics below are from four-

factor ANOVA's on each of the dependent variables. Duncan's

Multiple Range Test (Montgomery, 1984) compared pairs of

treatment means for significant main effects. Appendix B

shows that the assumptions of the ANOVA model were met.

Hit Rate

The main effects of KR (F[1,16=5.12, p<.05) , Defect

Discriminability (F[1,48]=150.78, p<.0001) and Defect

Probability (F[.,48]=7.31, p(.01) were all significant. HR

increased with KR and decreased for Low Discriminability

defects. In addition, HR was also higher in the 0.2 defect

probability condition. There was also a significant KR X

Defect Probability interaction (F[1,48]=13.53, p<.01),

suggesting that KR provided a greater improvement in HR for

0.4 defect probability than the 0.2 probability.
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False Alarm Rate

The only significant effect for FAR was the main effect

of Defect Discriminability (F[1,48]=92.63, p< .0001). Not

surprisingly, FAR was higher in the more difficult, Low

Discriminability condition.

Sensitivity (d')

Table 3 contains mean values for d' , 2, 2', Q-Q' and

2 variability within each condition. Table 4 contains

differences between condition means. Inspector sensitivity

was an average of 0.47 greater in the KR condition when

compared with NO-KR (F[1,16]=7.22, p<.05) , as shown in Table

4. The d' from the High Discriminability task was an

average 1.65 larger than from the Low Discriminability

length difference judgement task (F[1,48]=54.60, p<.001),

confirming the importance of task manipulations on d'

Though less significant, the sequence of defect

discriminability levels was also important in influencing

d'. Performing the Low followed by the High

Discriminability task produced an average 0.38 greater d'

than the opposite order F[1,16J=4.65, p<.05) . This implied

more efficient learning by starting on the more difficult

task rather than the easier task. Interestingly, the Defect
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Table 3. Mean Values for d' , 2, B-2' , and VAR in
Experiment 1

------------------------------------------------------------------------------------------

Defect Discriminability

High Low

------------------------------------------ +--------------------------------------------------

Defect :
Prob ; d' B B-23: BVAR : d' 13 :Q-13: i3VAR

+-------------+---------------------------------------------------------------------------

.2 :3.27 5.67 3.89 0.20 :1.48 2.00 1.87 0.22
A

.4 :3.32 3.52 2.26 0.11 :1.35 1.79 0.63 0.27

-------------- +----------------------------------------------

.2 :3.73 2.08 1.92 0.24 :1.86 1.77 2.23 0.15
B

.4 :3.94 1.70 1.15 0.30 :2.00 1.86 0.57 0.10

-------------------------------------------- +------------------------------------------------

.2 :2.90 6.93 5.64 0.25 :1.52 2.49 1.51 0.21
C

.4 :2.52 7.50 6.17 0.18 :1.21 2.19 0.71 0.32

+-------------+---------------------------------------------------------------------------

.2 :3.17 1.80 2.68 0.25 :1.65 2.09 1.91 0.20
D

.4 :2.83 8.74 7.24 0.25 :1.39 5.00 3.70 0.16
+------------------------------------------------------------

NOTE: A. KR, High to Low Discriminability Sequence
B. KR, Low to High Discriminability Sequence
C. NO-KR, High to Low Discriminability Sequence
D. NO-KR, Low to High Discriminability Sequence
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Table 4. Contrasts Between Condition Means in Experiment 1

+------------------------------------------------------------------------------------------

Differences in
:Contrast Conditions

d' 2 :2-QS: BVAR
+------------------------------------------------------------------------------------------

A KR - No KR 0.47 * -2.03 -1.86 * -0.026:

B [Lo to Hi] -0.38 * -0.90 -0.18 -0.015:
[Hi to Lo]

C High - Low :1.65 *** 2.33 *** 2.21 *** 0.020:

D 0.2 - 0.4 0.13 -0.92 -0.08 0.004:

+------------------------------------------------------------------------------------------

* P<.0 5  ** P<.01 *** P<.001

NOTE: A. KR
B. Discriminability Sequence
C. Discriminability
D. Defect Probability

Probability factor did not attain significance in d'

(F[1,48]=2.20, p>.i). Among these independent

manipulations, there were two significant interactions for

sensitivity. The KR X Defect Discriminability interaction

(F[1,48]=7.67, p<.01) showed that KR was more effective in

increasing sensitivity for High compared to Low

Discriminability defects. KR also increased sensitivity

more in the 0.4 defect probability condition relative to the

0.2 condition as evidenced by the significant KR X

Probability interaction (F[1,48]=5.05, p<.05).
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Response Criterion (2)

Defect discriminability was the only significant main

effect on inspector response criterion, with High

Discriminability defects increasing 2 by an average of 2.33

(see Table 3) compared to Low Discriminability defects

(F[1,48]=16.10, p<.001). Although neither the KR nor the

defect probability main effects significantly influenced 2

(P>.05) , there was a significant interaction between these

two factors (F[1,48]=4.63, p<.05). 2 was lowered from 5.9 to

under 2.3 for KR in the 0.4 defect probability condition.

This interaction is clearly shown in Figure 7. A second

interaction was also observed between Defect

Discriminability Sequence and Defect Probability

(F[l,48]=6.42, p<.05). This interaction, also shown in

Figure 7, is complex in its interpretation: as defect

probability increased from 0.2 to 0.4, those who started in

the Low discriminability condition became more conservative

(larger 2) than those who started in the High

discriminability condition.
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(a) (b)

KR EFFECT DISCRIMINABILITY

SEQUENCE EFFECT
6

< NO KR HIGH TO LOW
I-
W 4

KR

LOW To HIGH
|I 1 1

.2 .4 .2 .4

DEFECT PROBABILITY

Figure 7. a Interactions for Defect Probability. (a) KR X
Defect Probability Interaction. (b)
Discriminability Sequence X Defect Probability
Interaction
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A third interaction was also observed between Defect

Discriminability Sequence and the level of Defect

Discriminability (F[1,48]=6.06, p<.0 5 ) with 3 being

dramatically lowered for High discriminability defects in

the Low to High Discriminability sequence compared to the

High to Low sequence.

Optimal Response Criterion (2-)

Relative success in shifting one's 2 to its optimal

value is an important indication of training progress. A 1

optimality score was computed from :1-1'f, with smaller

values associated with more optimal performance. 2- for

defect probabilities 0.2 and 0.4 were computed as 4.0 and

1.5, respectively, from Equation 3. ANOVA for :2-Z': showed

significant main effects of KR (F[1,16]=6.66, p<. 0 5 ) and

Defect Discriminability (F[1,483=15.13, <.001). Both KR

and Low discriminability defects produced significantly

lower :2-2-: than NO-KR and High Discriminability defects.

There were also significant KR X Defect Discriminability

(F(I,48]=4.75, p<.05) and KR X Defect Probability

(F[1,481=6.19, p<.05) interactions, with the KR advantage

more pronounced for High Discriminability defects and higher

defect probabilities, as shown in Figure 8.
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LESS 
(a)

OPTIMAL DISCRIMINABILITY PROBABILITY

EFFECT EFFECT
6

.4
al4 HIGH

2 .2

LOW
MORE

OPTIMAL NO KR KR NO KR KR

KNOWLEDGE OF RESULTS

Figure 8. :-': Interactions for KR. (a) Discriminability
X KR Interaction. (b) Defect Probability X KR
Interaction.
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Relationship Between Sensitivity
and Criterion

The relationship between d' and 2 was evaluated to

determine if any systematic dependence existed between these

two parameters. A multiple regression for d' , using the

four independent variables plus 2 as predictor variables,

illustrated that the coefficient for 2 was not significant

(t(df=l) =-0.77, p>.i). A correlation analysis was also

performed to determine if subjects with greater sensitivity

(higher d' values) were also able to shift their 2's more

optimally (lower :B-a*:). The correlation between :2-2':

and d' was only 0.164, which was not significance

(F[I,78]=2.15, P>.l).

2 Variability

The ANOVA showed that no main effect was significant

for 2VAR (see Tables 3 and 4). In particular, KR clearly

did not significantly reduce the variability in inspectors'

response criterion. The only significant interactions

included the Defect Discriminability Sequence X Defect

Discriminability Level term (F(1,48]=14.61, p<.0001) and a

three-way term which included the above two variables and

Defect Probability (F[1,48]=5.72, p<. 0 5 ).
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Regression analysis provided no evidence that a

negative linear relationship existed between d' and 2VAR

within any condition. Higher values of d' were not

associated with reduced ZVAR. Sensitivity and 2 variability

were negatively correlated for subjects in the KR/High to

Low Defect Discriminability Sequence (r= -0.257) , however

the regression was not significant (F[1,18]=1.27, p>. 1 ).

There was a significant positive linear relationship between

d' and CVAR (F[1,18]=12.16, p<.Ol) for subjects in the

KR/Low to High Defect Discriminability Sequence condition.

In summary, 2VAR was not a significant predictor of d'

values (t=l. l1, p>. 1) .

Reaction Time

As accuracy is usually correlated with observation time

in visual detection studies, a separate analysis of Reaction

Time (RT) was performed. Defect Discriminability

(F[1,48]=24.33, p<. 0 0 1 ) was the only significant main

effect, with lower RT's for High Discriminability defects.

Although mean RT was 300 msec faster for the KR condition,

this difference was not significant due to high between-

subject variability. The presence of a significant

Discriminability Sequence X Defect Discriminability
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interaction (F[1,64]=4.28, p<. 0 5 ) indicated that decreasing

defect discriminability resulted in a greater increase in RT

for those who started with Low discriminability defects than

for those who started with High discriminability defects.

There was also a KR X Defect Discriminability interaction

(F[1,48]=9.17, p<.0l) showing that KR was effective in

significantly lowered reaction times in the Low

Discriminability condition.

Discussion

This experiment demonstrated that KR significantly

increased sensitivity and reduced the amount of time

required to make a decision in a visual inspection task.

The increase in sensitivity was more pronounced for High

Discriminability defects and 0.40 defect probability while

the faster reaction times were associated with Low

Discriminability defects. The overall effect of KR was

mediated by an increase in HR, as opposed to a significant

decrease in FAR, likely acting as an additional source of

information for increasing one's defect knowledge and

allowing better discriminability between defects and

nondefects during training. Some investigators, however,

have argued that the primary effect of KR is motivational
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rather than informative (Weidenfeller, Baker, and Ware,

1962; Antonelli and Karas, 1967). Observed collateral

effects, here, suggested that KR is providing a specific

type of information which can be used to improve defect

detection performance.

The present relationship between KR and response

criterion casts some doubt on the purely motivational

aspects of performance feedback. According to theory

underlying 2-, as the defect probability increases, one's 2

should decrease, concomitant with more liberal responding.

Here, KR failed to significantly lower 2 as defect

probabilities increased from 0.2 to 0.4. Therefore,

subjects may not have extracted the necessary defect

distribution information from KR to lower 2. KR did,

however, move B towards its optimal value, especially in the

0.4 defect probability condition. The effect of KR on 2 in

this instance certainly appeared to reverse the extreme

nonoptimality of the No-KR condition, although it still did

not precisely follow the normative predictions of the 2-

model. If effects are assumed to be primarily motivational,

KR should produce similar effects on both d' and 2. The

disparate effects of KR on d' and 2 suggested that specific

information was provided which enhanced sensitivity but had

little effect on the magnitude or variability of response
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criterion. While increased motivation may be an important

part of KR, it may only come about as a result of the

superior performance achieved through greater defect

knowledge. According to this view, higher performance

causes increased motivation rather than vice versa.

An implication from the overall failure of KR to

influence 2 is the existence of an inherent difference in

representing defect specification versus distribution

knowledge in the cognitive system. The physical

characteristics of defects may be more easily extracted,

stored and accessed at a later time than associated

probabilistic information. Mental or internal models may

also be used to accentuate this advantage. Probabilistic

judgement, on the other hand, likely relies more on

heuristics and subjective biases of the human decision maker

(Kahneman, Slovic, and Tversky, 1986). These less

structured, informal rules likely require more development

time and less competition from other aspects of the

inspection task. Despite the inability of KR to produce

optimal 2 shifts as defect probabilities increased, the

presence of KR clearly resulted in more overall optimal

criterion placement, as measured by B-g' , and dramatically

reversed the extreme conservatism of NO-KR subjects in the

0.40 probability condition. One way to account for these
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results is to view defect distribution knowledge as

consisting of several different types; e.g., knowledge of

defect frequencies and knowledge of criterion placement.

This idea is consistent with Embrey's (1975) view that the

ability to estimate the probability of a defect is a

completely separate attribute from one's skill in optimally

adjusting 2. The effect of KR on defect distribution

knowledge in this experiment is positive to the extent that

it provides frequency information to inspectors, which

reduces the extreme conservatism present in the NO-KR

condition. KR, however, failed to translate this knowledge

into optimal 2 shifts. The net result was an overall

tendency toward optimality due to KR without necessarily

following the predictions of the 2' model.

Another possible explanation for the higher inspector

sensitivity observed with KR is that KR provides the

inspector with response criterion knowledge which is then

used to reduce the variability of B and increase the

effective sensitivity (Drury, 1988) . However, the results

of this experiment showed that KR did not significantly

reduce a variability nor was d' related to the B variability

measure in any of the experimentai conditions. Thus, KR

increased sensitivity by enhancing defect knowledge.
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Defect discriminability, defined by the difference

between the mean lengths of defective and non-defective line

segments, had a strong influence on both d' and 3.

Decreasing the discriminability reduced HR while increasing

both FAR and RT. Changes in sensitivity, here, were not

related in any systematic way to changes in response

criterion, so high sensitivity does not necessarily allow

one to perform closer to 2'. Thus, the abilities which are

measured by d' and 2 are independent and require different

training strategies.

The Sequence of Defect Discriminability levels proved

to be a significant predictor of sensitivity, in that

starting with a higher difficulty task allowed subjects to

maintain a higher d' than those starting with a lower

difficulty task. The advantage of a high to low difficulty

(Low to High Discriminability) sequence held up for both

difficulty levels. One interpretation of this effect is in

terms of the mental workload demands of the inspection task.

Lintern and Wickens (1987) used attention theory to explain

the effect of mental workload on skill acquisition and task

training. According to a resource view of attention,

skilled task performance requires the investment of limited

processing resources, which must be allocated in greater

amounts as the demands of the task increase. Mane and
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Wickens (1986) predicted that increasing the mental workload

of a task to be trained should result in better learning if

the source of this increased load directly benefits task

learning (intrinsic task component). On the other hand, if

higher workload stems from aspects of the task which do not

directly benefit the target of learning (extrinsic task

component), then learning should deteriorate and performance

should be lowered.

Applying a resource theory framework to the present

inspection task can help explain the greater sensitivity

observed in the High to Low Difficulty (Low to High

Discriminability) sequence subjects. For subjects who

started out in the High Difficulty condition, the greater

mental workload associated with the Low Discriminability

defects forced these subjects to invest more resources in

learning the critical characteristics of the defects. As a

result, when next performing the Low Difficulty task, their

enhanced sensitivity due to better learning produced

significantly higher d' values than those who started with

the Low Difficulty task. Performing the Low Difficulty task

first may have failed to motivate subjects to invest

sufficient processing resources to learn the finer details
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of defects. In fact, sensitivity was higher when the high

difficulty task was performed fi-st than when it was

performed after 'practicing" on the Low Difficulty task.

The failure of the High to Low Difficulty Sequence to

similarly enhance the setting of a more optimal inspector

response criterion may also reflect the influence of mental

workload demands on task learning. In this case, however,

the higher workload of the Low Discriminability defects was

extrinsic to the task of learning the defect probability

distribution necessary to optimally adjust 2. Therefore,

shifting 2 optimally in response to increasing defect

probabilities was inhibited du1eing learning by the higher

workload demands imposed by an extrinsic aspect of the

inspection task. This distinction between intrinsic and

extrinsic task components can be used as a basis for

deciding which components should be trained as well as their

relative difficulty levels.
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Chapter 4

EXPERIMENT 2:
THE EFFECTS OF FALSE KR AND DECISION PAYOFFS

ON VISUAL INSPECTION PERFORMANCE

The overall objectives of this experiment was to 1.

compare the relative effectiveness of FALSE KR versus TRUE

KR for increasing inspector sensitivity; and 2. determine

the effects of changing decision payoffs on the optimization

of inspector response criterion.

Method

Subjects

Eighteen right-handed male volunteers from an

introductory Human Factors course were recruited to

participate in this experiment. Each was screened for 20/20

or better corrected visual acuity. Payment of up to

$5.00/hour was made; this included a bonus payment for

_orr%:5 responses. The experiment lasted about 1.5 hours.
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Apparatus

The equipment used in this experiment was identical to

that used in Experiment 1.

Experimental Design

Subjects were randomly assigned to one of three

feedback groups: NO-KR, TRUE-KR, or FALSE-KR. All subjects

performed the LOW discriminability version of the inspection

task described in Experiment 1 in conjunction with three

independent variables schematized in Table 5 and described

below.

Knowledge of Results

The presentation of KR for the NO-KR and TRUE-KR groups

was exactly the same as the presentation for NO-KR and KR

groups of Experiment 1. In the FALSE-KR group, however,

subjects received incorrect feedback on selected trials.

Data from pilot testing established when inspectors received

False KR to prevent subjects from quitting the experiment.

If the length of a line segment was between .48 and .52 of

the width of the viewing area, then KR ('right* or *wrong')

was randomly presented to the subject at the top of the
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Table 5. Experiment 2 design.

------------------------------------ +---------------------+

:DECISION DEFECT NO-KR TRUE-KR FALSE KR
:PAYOFFS PROB.
------------------------------- ---------------------

0.2
SYMMETRIC

0.4 Block I Block II Block III:
4.-------------------------------

0.2
HR 2X Ss = 1-6 Ss= 7-12 Ss= 13-18

0.4
. ----------------------

0.2
HR 9X

0.4
+ ------------------------------------ ---------------------

NOTE: Sequence of Payoff conditions counterbalanced between
subjects.

screen. Summary false accuracy and monetary reward

information was also provided after each 80-trial block.

Instructions in the two KR conditions specified that the

number of defects could change between blocks; no such

information was given in the NO-KR condition.

Decision Payoffs

Three different payoff conditions were used within

each subject. For each payoff condition, the values/costs

of various decision outcomes were verbally communicated to

the subject at the beginning of a block of trials. In the

Symmetric payoff condition, the values and costs of all

decisions were equal. In the 2X condition, the value of a
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hit and the cost of a miss were twice as high as the value

of a correct acceptance and the cost of a false alarm. In

other wcrds, there was a modest financial gain for subjects

who maximized correct detection of defects (hits) and

minimized misses. In the 9X condition, the value of a hit

and the cost of a miss were 9 times as high as the other two

decision outcomes. Subjects now received a substantial

financial reward for maximizing hits and minimizing missed

defects.

Defect Probability

The number of defects was manipulated within each

subject from 16 defects per 80 trials for the 0.2

probability condition to 32 defects per 80 for the 0.4

condition.

Each subject performed a total of six blocks of 80

inspection trials. The blocks were divided into three

pairs, one pair for each payoff condition. The first block

of each pair was presented at defect probability 0.2 and the

second at 0.4, replicated across the three payoff

conditions. The sequence of payoff conditions was

counterbalanced across subjects.
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Subjects were nested within KR levels while both Payoff

and Defect Probability were within subject variables. All

main effects are derived from fixed factors with the subject

factor randomized (see Appendix A for a complete description

of the statistical model).

Procedure

Prior to performing the task, each subject observed 20

inspection trials presented by the experimenter with the

halfway criterion in place. The difference between defective

and nondefective line segments was carefully explained and

reinforced. Each subject practiced the task for four blocks

of 25 trials, two blocks at defect probability 0.2 and two

blocks at 0.4. Performance of at least 90% correct

decisions was required on the last two blocks to be admitted

into the experimental phase. After training, each subject

performed six blocks of 80 trials according to the KR group

and payoff sequence assigned. Two minutes rest was provided

between blocks. HR, FAR, and RT were recorded for each

block. Derived values of d', 2, :2-2-: were also calculated

for each condition. A bonus system, similar to the one used

in Experiment 1, reinforced high inspection performance for

a given payoff condition.
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Results

Reported statistics below are from three-factor ANOVA's

on each dependent variable. Mean values for dependent

measures are included in Table 6. Table 7 contains F values

for main effects along with error probabilities. Pairwise

comparisons between significant treatment means were made

using Duncan's Multiple Range Test. Appendix B shows that

the assumptions of the ANOVA model were met. In addition,

Appendix 2 also shows that the SDT assumptions of normality

and equal variance were generally fulfilled.

Hit Rate

All main effects were significant for HR. Inspectors

in the NO-KR condition had significantly lower HR's than

those in either the TRUE-KR or FALSE-KR conditions (F(2,15)=

10.53, p<.01). There was no difference between TRUE-KR or

FALSE-KR inspectors. HR was also the lowest in the

Symmetric Payoff condition (F(2,75)=9.69, p<. 0 0 1) and in the

0.4 Defect Probability condition (F(1,75)=7.59, p<.01). In

other words, inspectors correctly detected defects more

often in the more liberal payoff conditions and when defect

probability was low. No interactions were present.
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Table 6. Mean values for d', 2, and :2-2-: in Experiment 2

++-----------------------------+--+-----------------------------+

DEFECT NO-KR TRUE-KR FALSE KR
PROB. d' 2 :2-13*:: d' Z :2-2*:: d' 2 :2-2*::

---- -- -------------------------------------------. 4--------------------------------

: 0.2 :1.75 1.60 2.40 :2.42 2.84 1.87 :1.91 0.68 3.32
SA

0.4 :1.67 4.48 3.04 1.90 1.89 0.43 :2.20 1.90 1.13
---- +- ------------------- +--+-----------------------------

0.2 1.81 1.13 0.93 :2.31 1.12 0.95 :1.95 0.44 1.56
B --------------- - - - - - - - - - -

0.4 :1.55 3.04 2.29 :2.35 1.50 0.96 :1.68 0.67 0.17
---- -- ------------------------------------------- +--------------------------------

: 0.2 :1.70 0.82 0.44 :2.12 1.50 1.06 1.58 0.49 0.22
C c

0.4 :1.82 1.81 1.65 :2.20 1.22 1.07 :1.74 0.35 0.19
.--- - ------------------------------------------------------

NOTE: A. Symmetric decision payoff
B. Hits 2X more valuable than false alarms
C. Hits 9X more valuable than false alarms

Table 7. Calculated F-values for Main Effects in
Experiment 2

4.-----------------------------------------------------------------------------------------

Main Effect d' 2 :2-2*: RT:

KR 5.50* 4.77* 4.40* 0.64:

PAYOFF 1.33 10.35*** 10.16*** 0.33:

DEFECT PROBABILITY 0.04 9.56** 0.75 0.17:
------------------------------------------------------------

*P(.05 **.<.01 * P<.00O1
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False Alarm Rate

Only KR and Payoff main effects on FAR were present.

FALSE-KR inspectors had the highest FAR with no difference

between NO-KR and TRUE-KR inspectors (F(2,15)=11.38, p<.01).

Inaccurate performance information apparently caused

inspectors to make more errors identifying defects than no

information at all. FAR significantly increased from the

Symmetrical Payoff condition through 2X and 9X conditions as

inspection instructions became increasingly more liberal

(F(2,75)=31.2, p<. 0 0 1 ). Inspectors were more likely to

incorrectly identify defects as the value of a hit and the

cost of a miss increased. No interactions were present.

Sensitivity (d')

The only main effect present for d' was KR. TRUE-KR

inspectors had significantly higher sensitivity than either

NO-KR or False-KR inspectors. On the average, inspectors

who received accurate information about their performance

increased their sensitivity by over 20% compared to

inspectors receiving FALSE-KR and over 25% for NO-KR. This

advantage of "'RUE-KR was consistent across all experimental

conditions. No interactions were present.
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Response Criterion (B)

All main effects were significant for B. Both KR

groups had lower Z's than NO-KR with FALSE-KR being

significantly lower (F(2,15)=4.77, p<.0 5 ). Inspectors

receiving inaccurate performance information had more

liberal response criteria than either NO-KR or TRUE-KR

inspectors.

Payoffs also produced significant changes in B as the

2X and 9X conditions, which emphasized the value of hits

over false alarms, lowered B compared to the Symmetrical

Payoff condition (F(2,75)=10.35, p<. 0 0 1). Lowering B as the

value of a hit (and cost of a miss) increased is in

accordance with the SDT model.

On the other hand, increases in B as def ct

probabilities increased from 0.2 to 0.4 (F(1,75)=9.56,

p<.01) violated this model. This discrepancy can be

explained by considering the KR X Defect Probability

interaction (F(2,75)=8.39, p<.01) shown in Figure 9. In

both the NO-KR and FALSE-KR conditions, B significantly

increased as defect probabilities increased; however, TRUE-

KR inspectors decreased B as predicted.
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The consistent advantage of TRUE-KR in manipulating 2

between both payoff conditions and defect probabilities is

clearly illustrated in Figure 10. Each Block represented a

specific Payoff/Defect Probability combination.

1. Block 1 - Symmetrical/0.2

2. Block 2 - Symmetrical/0.4

3. Block 3 - 2X/0.2

4. Block 4 - 2X/0.4

5. Block 5 - 9X/0.2

6. Block 6 - 9X/0.4

Duncan's Multiple Range Test (Montgomery, 1984) for

pairwise comparisons of mean 2's within each block against

Z* showed no significant difference between TRUE-KR B points

and Z* points across all blocks. Figure 10 shows that NO-KR

inspectors had trouble manipulating 2 in the 0.4 condition

while FALSE-KR inspectors had trouble in the 0.2 condition.

Optimality Scores (:B-B*:)

Inspectors in the NO-KR condition had significantly

higher scores (less optimal) than inspectors in either KR

condition (F(2,15)=4.4, p<.05). Both TRUE and FALSE KR

resulted in more optimal performance. In addition, overall
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inspector performance in the Symmetric Payoff condition was

significantly less optimal than the other two conditions

(F(2,75)=8.12, p<.001). While there was no significant

difference in scores for the two probability conditions

(F(1,75)=.75, p>.l) , there was an interaction between KR and

Defect Probability (F(2,75)=8.12, p<. 0 1 ). Inspectors

receiving NO-KR were less optimal as defect probabilities

increased while both KR groups became more optimal.

Reaction Time (RT)

There were no significant main or interactive effects

of any of the independent variables on RT. However, RT was

17% lower, on the average, for KR inspectors, although this

decrease was not significant (F(2,15)=.64, p<.l).

Discussion

The experimental results obtained thus far clearly

demonstrated that KR significantly increased inspector

sensitivity and resulted in overall more optimal criterion

placement than NO-KR inspectors. In addition, there was

substantial evidence that KR also reduced the time to make

an inspection decision without sacrificing accuracy. In



88

Experiment I, the increase in sensitivity was more

pronounced for High Discriminability defects and 0.4 defect

probability while faster RT's were associated with Low

Discriminability defects. The overall effect of KR in both

experiments was mediated by a significant increase in HR, as

opposed to a decrease in the FAR, likely acting as an

additional source of information for increasing one's defect

knowledge and allowing better discriminability between

defects and nondefects.

While the ability of KR to increase inspector sensitivity

in Experiment 1 could be attributed to either motivational

or informational aspects of performance feedback, the

results of Experiment 2 clearly supported the informational

explanation. Subjects who received TRUE-KR had

significantly higher d's than subjects who received either

FALSE-KR or NO-KR (with no significant difference between

the latter two groups). If increased motivation was

responsible for the higher sensitivity than there should

have been no difference between the TRUE-KR and FALSE-KR

groups. Also, since FALSE-KR inspectors only received

incorrect feedback on selected trials where the distinction

between defects and nondefects was more problematic, it is

apparent that the more difficult trials are important for

acquiring higher levels of defect knowledge. Although
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increased motivation may certainly be an important aspect of

any KR technique, it may only come about as a result of

better performance achieved through greater defect

knowledge.

The effects of KR on inspector response criterion are

less clear cut but still encouraging. According to the

theory underlying 2 , as defect probability increases, one's

3 should decrease, concomitant with more liberal responding.

In Experiment 1, KR did not significantly lower 1 as defect

probabilities increased from 0.2 to 0.4. Apparently,

subjects did not extract the necessary defect distribution

information from KR to optimize beta. However, KR did shift

3 toward its optimal value, especially in the 0.4 defect

probability condition. This result was closely replicated

in Experiment 2 where TRUE-KR did not change 2 significantly

as a function of defect probability but did move 2 closer to

optimal then either FALSE-KR or NO-KR. The effect of KR on

B, in these instances, reversed the extreme nonoptimality of

the NO-KR condition, although it still did not precisely

follow the normative predictions of the Z' model.

If the defect probability and payoff variables

manipulated in Experiment 2 are combined, then a comparison

can be made between B and KR as a function of the six Defect

Probability X Payoff conditions. The result showed that
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TRUE-KR tracked the B model more closely than either of the

other KR groups. For NO-KR, 4 of the 6 B data points were

significantly different from the corresponding B' points for

that particular condition. For FALSE-KR, 2 of the 6 were

significantly different while for TRUE-KR, none of the B

data points were significantly different from 2-. Therefore,

TRUE-KR inspectors were able to manipulate their response

criterion more optimally as both payoffs and defect

probabilities changed during the task.

The results of the B-B' scores generally supported the

superiority of TRUE-KR. Across all conditions, both TRUE-KR

and FALSE-KR resulted in significantly lower (more optimal)

scores than NO-KR. TRUE-KR was particularly effective in

producing lower scores for more conservative (higher) B2's

while FALSE-KR was associated with lower scores for more

liberal (lower) B's.

The cognitive model of KR utilization presented earlier

should be modified in light of the current results. First,

the primary advantage of KR was in increasing inspector

sensitivity by enhancing defect know[' .e. While both KR

groups had more optimal B placement, overall B performance

did not follow the optimal model, especially when

manipulated by defect probabilities. Second, the concept of

defect distribution knowledge should be broken down into two
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components based on the experimental evidence: Defect

frequency knowledge and criterion placement knowledge.

While KR provided defect frequency knowledge, the knowledge

to translate this to the actual placement of one's response

criterion may require more specific and detailed

information.
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Chapter 5

EXPERIMENT 3:
TRAINING FOR DECISION MAKING

IN VISUAL INSPECTION:
INFLUENCE OF TASK DIFFICULTY AND KR

The objectives of this experiment were: 1. to

determine if inspectors trained with KR maintained their

higher sensitivity when KR was removed; 2. to determine if

inspectors trained on high difficulty defects had higher

sensitivity when subsequently performing the Low difficulty

task; and 3. to evaluate the effects of training on

retention of visual inspection skill.

Method

Subjects

Twenty right-handed males were recruited from a local

newspaper ad for this experiment. Each was screened for

20/20 or better corrected visual acuity. Payment of up to

$5.00 /hour was made; this included a bonus payment for

superior performance. Total experimental time was 2 hours

over two sessions.
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Apparatus

The equipment in this experiment was identical to that

used in the previous two experiments.

Experimental Design

Each subject was randomly assigned to one of four

training groups in conjunction with three independent

variables schematized in Table 8 and described below.

Inspector Training

Subjects were divided into four groups based on the

level of KR (NO-KR, KR) and task difficulty (Low, High):

1. Group I - NO-KR/Low Difficulty

2. Group II - NO-KR/High Difficulty

3. Group III - KR/Low Difficulty

4. Group IV - KR/High Difficulty

The NO-KR, KR groups used here were treated exactly the

same as in Experiment 1. Also, the difficulty levels

correspond to the defect discriminability levels described

in Experiment 1; low difficulty was characterized by High

Discriminability defects and high difficulty was

characterized by Low Discriminability defects.
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Table 8. Experiment 3 Design

+----------------------------------------------------------+

TRAINING GROUPS
------------------------------------------

:GROUP I GROUP II GROUP III GROUP IV
(REPLICATIONS #1 & #2)

PHASE DEFECT ------------------------------------------
PROB #1 #2 #1 #2 #1 #2 #1 #2 :

---------------------- - - -- --

0 .2 a a a :

0.4

BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4
0.2

2 Ss= 1-5 Ss= 6-10:Ss= 11-15:Ss= 16-20
0.4

0.2
3

0.4
4------------------4----------4---------------4--------------------4----------------------

NOTE: Group I - NO-KR/Low Difficulty
Group II - NO-KR/High Difficulty
Group III - KR/Low Difficulty
Group IV - KR/High Difficulty
All subjects within a block performed two

replications at each probability level for all three phases.
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Experimental Phase

The experiment was divided into three separate phases:

1. Phase 1 - Training (based on group
assignment)

2. Phase 2 - Immediate posttest (No-KR/Low
Difficulty)

3. Phase 3 - Repeat Phase 2 (three weeks later)

Each phase was further divided into four blocks of 100

trials each. Phases 1 and 2 were performed on the same day

while Phase 3 was performed 3 weeks later. Training Group

manipulations were present only during Phase 1. During

phases 2 and 3, a standard NO-KR/Low difficulty was

presented regardless of the training group assigned.

Performance on this "standard" task was used to evaluate

inspector training.

Defect Probability

Just as in the previous two experiments, the number of

defects varied within a phase from 20 for the 0.2 condition,

to 40 for the 0.4 condition. Each subject always performed

two replications of the 0.2 condition first followed by two

replications of the 0.4 condition across all 3 phases.

Five subjects were randomly assigned to each training

group. During Phase 1, each group performed their assigned
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training task for two blocks of trials at 0.2 defect

probability followed by two blocks at 0.4. During Phase 2,

all groups switched to the NO-KR/Low Difficulty task for the

same block sequence as Phase 1. Subjects then repeated the

Phase 2 task three weeks later for Phase 3 (see Appendix A

for the appropriate statistical model).

Procedure

Each subject initially observed 20 trials with the

half-way criterion visible and held constant. Next, 25

trials with five defects were presented to familiarize each

subject with the experimental equipment and method of

responding. Minimal practice was given to avoid "pre-

training" subjects. Phase 1 began immediately with four

blocks of 100 trials with the assigned training task. The

first two blocks were always at 0.2 defect probability and

the last two at 0.4. A two-minute rest period was given

between blocks and a five-minute rest period between Phases.

In Phase 2, all subjects performed four blocks of 100 trials

with a NO-KR/Low Difficulty version of the inspection task.

Again, the first two blocks at 0.2 and the second two at 0.4

defect probability. Phase 2 inspection task was repeated

three weeks later during Phase 3. HR, FAR, and RT were
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recorded for each block during each phase. Values for d',

2, :B-a*: were calculated. The same bonus system used in

previous experiments was implemented during each phase.

Results

Table 9 contains mean values for HR, FAR, and RT while

Table 10 contains mean values for d' , 1, and :2-2*: for each

training group by phase and defect probability. Reported

statistics below are from three factor ANOVA's on each of

these dependent variables. Appendix B shows that the

assumptions of the ANOVA model were met. Duncan's Multiple

Range Test was used for all pairwise comparisons of

treatment means. Both inspector HR and FAR will be

considered together in the following section since they are

both used to derive the primary measures of inspection

performance.

Hit Rate and False Alzrm Rate

Although there was a small decrease in HR for Training

Groups III and IV which were trained with KR, this change

was not significant (F(3,16)=1.34, p>.l). In contrast,

these groups had significantly less false alarms

(F(3,16)=8.70, p<.0l) than those groups trained without KR.
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Table 9. Mean Values for HR, FAR, and RT in Experiment 3

------------------------------------------------------------------------------------------

PHASE

1 2 3
DEFECT
PROB HR FAR RT HR FAR RT HR FAR RT!

+---------+-----------------+--------------------------------+-------------------------------

0.2 0.88 0.27 1.34:0.84 0.18 1.27 :0.86 0.19 1.10:
A

0.4 0.84 0.15 1.26:0.84 0.16 1.11:0.87 0.14 0.93:
+---------+-----------------+--------------------------------+-------------------------------

0.2 :0.81 0.35 0.93:0.91 0.26 0.76:0.93 0.27 0.76:
B

0.4 0.72 0.30 0.87:0.88 0.19 0.77:0.89 0.17 0.72
1------------------------------------------------------------.-------------------------------

0.2 0.80 0.05 0.61:0.87 0.10 0.71:0.87 0.13 0.75:
C

0.4 :0.87 0.05 0.62:0.77 0.09 0.70:0.73 0.09 0.75
4.---------------------------.--------------------------------+-------------------------------

0.2 :0.66 0.11 0.79:0.91 0.09 0.79:0.89 0.07 0.80:
SD

0.4 :0.66 0.1i 0.79:0.69 0.05 0.81:0.74 0.04 0.80:
+---------+-----------------+--------------------------------+-------------------------------

NOTE: A. Group I NO-KR/Low Difficulty defects
B. Group II NO-KR/High Difficulty defects
C. Group III KR/Low Difficulty defects
D. Group IV KR/High Difficulty defects
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Table 10. Mean values for d', B, and B-13" in ExDeriment 3

------------------------------------------------------------------------------------------

PHASE

1 2 3
DEFECT
PROB d' B 2-2-: d' Z :2-2-: d' B :2-2-:

+---------..-----------------+--------------------------------+-------------------------------

0.2 :1.90 0.60 3.40:2.07 1.01 2.99:2.08 0.96 1.10:
A

0.4 :2.25 1.70 1.33:2.18 1.78 1.47:2.49 1.61 1.39:
+---------+-----------------+--------------------------------+-------------------------------

0.2 :1.37 0.67 3.34:2.08 0.61 3.39:2.16 0.47 3.54:
B

0.4 1.15 0.93 0.58:2.30 1.99 2.00:2.38 1.02 1.08;
+---------+-------------------------4--------------------------------------------

0.2 :2.76 5.00 3.31:2.62 2.41 3.18:2.42 1.34 2.66:
C

0.4 :2.83 2.76 1.50:2.37 3.84 3.01:2.31 3.57 2.60:
.4---------+-----------------+--------------------------------+-------------------------------

0.2 1.76 2.13 1.86:2.88 1.59 2.41:2.95 2.67 2.42:
D

0.4 :1.75 2.56 1.27:2.28 5.01 3.51:2.65 4.95 3.72:
+---------~-----------------+--------------------------------+-------------------------------

NOTE: A. Group I NO-KR/Low Difficulty defects
B. Group II NO-KR/High Difficulty defects
C. Group III KR/Low Difficulty defects
D. Group IV KR/High Difficulty defects
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Phase and Defect Probability also had significant effects on

both with the Phase 1 (training) resulting in lower HR

(F(2,200)= 11.75, p<.001) and higher FAR (F(2,200)=9.85,

P<001) while phases 2 and 3 remained unchanged. The 0.2

Defect Probability condition had both a higher HR (F(1,200),

p<.001) and a higher FAR (F(1,200)=28.49, p<.001) over all

conditions.

Interactions between these independent variables can be

used to further isolate and analyze their effects on HR and

FAR. The Training X Phase interaction was significant for

both HR (F(6,200)= 6.60, p<. 0 0 1 ) and FAR (F(6,200)= 7.67,

P<. 0 0 1 ). Figure 11 shows that, during training, Groups II

and IV had predictably lower HR than their Group I and III

counterparts since these groups were trained on higher

difficulty defects. However, during Phase 2 where all

groups performed the same No KR/Low Difficulty inspection

task, HR increased dramatically for Groups II and IV and

remained constant during Phase 3, three weeks later. In

particular, Group II inspectors had the highest HR's of all

groups during Phases 2 and 3 despite being trained on High

Difficulty defects. HR for Groups I and III remained

constant across the 3 phases. For FAR, Groups I and II



101

0.1

H

T
R
A

E GROUP 1

0.6- GROUP 11

'~GROUP III

-- GROUP W

TRIIGTEST RETEST

PHASE

Figure 11. Phase X Training Group Interaction for Hit Rate



102

shown in Figure 12 had significantly higher FAR's during

training which then decreased during phases 2 and 3.

Inspectors trained with KR had significantly lower FAR's

which remained constant across all 3 phases.

The Training X Defect Probability interaction was also

significant for both HR (F(3,200)= 3.78, p<.05) and FAR

(F(3,200)= 3.37, p<. 0 5 ). Groups II, III, and IV all

displayed a significant decrease in HR from 0.2 to 0.4

Defect Probability conditions. Group IV (KR/High Difficulty

defect) showed the most dramatic decrease in HR while Group

I (No KR/Low Difficulty defects) showed no change as a

function of increasing probability levels. For FAR data,

inspectors trained without KR (Groups I and II) had overall

higher FAR which decreased as defect probability increased.

In contrast, Inspectors trained with KR (Groups III and IV)

had significantly lower FAR which remained constant across

the defect probability conditions.

In addition, HR also exhibited a Phase X Defect

Probability interaction (F(2,200)= 3.29, p<. 0 5 ) where Phases
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2 and 3 showed a significant decrease in HR as defect

probabilities increased from 0.2 to 0.4. During Phase 1

(training), HR remains unchanged from 0.2 to 0.4 but at an

overall lower level than Phases 2 and 3.

Sensitivity d')

Inspector sensitivity as measured by d' was

significantly affected by both Training Group and Phase.

Inspectors trained with KR (Groups III and IV) had an

overall higher mean d' (F(3,16)= 3.79, p<.05) , especially on

High Difficulty defects. Overall, Phase 1 (training) had a

significantly lower mean d' than Phases 2 or 3.

The Training Group X Phase interaction (F(6,200)=18.95,

p<.001) illustrated in Figure 13 showed that inspectors

trained on High Difficulty defects had expected lower d's

during Phase 1, but the group trained with KR (Group IV)

maintained a significant advantage during Phases 2 and 3

when the KR was removed. In contrast, Group III who also

trained with KR but with Low Difficulty defects had the

highest mean d' during training but than decreased during

Phases 2 and 3. Groups trained without KR had essentially

constant d's through phases 2 and 3.
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The Training Group X Defect Probability interaction

further isolated the effects of the various training groups

(F(3,200)=6.14, p<.001). Groups III and IV trained with KR

had significantly higher d's than those trained without KR

for the 0.2 Defect Probability condition. This difference

becomes much smaller in the 0.4 condition where Group IV

inspectors had significantly smaller d's from 0.2 to 0.4

while inspectors in Group I significantly increased their

d's from 0.2 to 0.4. These trends were much more apparent

for Phases 2 and 3 on the standard No KR/Low Difficulty

inspection task.

Response Criterion ()

Inspector response criterion as measured by 23 was

significantly affected by both Training Group and Defect

Probability. Inspectors in Groups III and IV had

significantly higher Z's than Groups I and II (F(3,16)=4.56,

R<. 0 5 ). The presence of KR during training was associated

with conservative decision making. In addition, going from

0.2 to 0.4 defect probabilities also produced significantly

higher 2's (F(1,200)= 17.13, p<.Ol) for the 0.4 condition.

The Phase X Defect Probability interaction

(F(2,200)=19.8, p<. 0 1 ) showed that during Phase I (training)

2 remained constant across probability conditions. However,
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there was a significant increase in 2 for Phases 2 and 3 as

defect probabilities increased from 0.2 to 0.4. This trend

of conservative decision making with increasing defect

probability was fairly consistent; the only exception was

Group III inspectors trained with KR/Low Difficulty defects.

Their performance during training depicted in Figure 14

reflected a trend of more liberal decision making (lower 2)

as defect probabilities increased.

2 Optimality Scores (:1-1*:)

These scores were used to evaluate response criterion

performance during inspection. Smaller deviations of 2 from

optimal B or 2* are associated with higher inspector

performance in terms of minimizing inspection error for a

given sensitivity. While Training Group did not have a

significant effect on these optimality scores (F(3,16)=2.46,

p>. 1) , both Phase and Defect Probability resulted in

significant changes. Inspectors were more optimal during

Phase 1 (training) (F(2,200)=3.51, p<.05) and in the 0.4

defect probability condition (F(1,200)=22.45, p<.001).

Optimality scores were lower overall during inspector

training and high defect probability conditions.
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The Training Group X Defect Probability interaction

(F(3,200)=8.61, p<.001) showed that for Groups I and II (No

KR) inspectors became more optimal as they moved from 0.2 to

0.4 defect probability conditions while Groups III and IV

remained the same. At least part of this "optimal"

performance of NO-KR inspectors is due to the extremely low

criterion adopted by these inspectors regardless of the

defect probability level. The Phase X Defect Probability

interaction (F(2,200)=3,64, p<.05) showed that when defect

probability is increased from 0.2 to 0.4, inspectors in

Phase I (training) were more optimal than in either

Phase 2 or 3. These interactions indicated that the

increased optimality experienced by inspectors in Groups I

and II when moving from 0.2 to 0.4 occurred primarily during

training.

Reaction Time (RT)

Inspector RT was also measured to determine decision

time under the various experimental conditions. Mean times

are located in Table 8. Training Group had a significant

effect on RT (F(3,16)=5.55, p<. 0 1); Group I inspectors

had the slowest RT compared to any of the other groups.

Groups II, III, and IV all had faster and similar RT's.

Both Phase and Defect Probability also affected RT with
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Phase 1 (F(2,200)=5.38, p<.01) and 0.2 Defect Probability

(F(1,200)=4.91, p<.05) producing significantly slower RT's

than the other conditions.

The Training Group X Phase interaction (F(6,200)=9.34,

P<.001) shown in Figure 15 clarifies the above main effects

by showing that during Phase 1 (training) , inspectors

trained with KR had significantly lower RT's than inspectors

in the NO KR groups. This advantage for Group IV disappears

during Phases 2 and 3. The Training Group X Defect

Probability interaction (F(3,200)=3.40, p<.05) show that RT

decreased from 0.2 to 0.4 conditions for Group I inspectors

and remained the same for the other 3 groups.

Discussion

The results of this experiment clearly show that KR

trained inspectors performed at a higher level, not only

during training when KR was actually present, but also

during subsequent phases when KR was no longer available.

Inspectors trained with KR showed higher sensitivity, more

optimal response criterion shifts and faster decision times

independent of task difficulty. In particular, sensitivity

was higher during Phase 2 when KR was withdrawn for

inspectors trained with KR regardless of the difficulty
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level. KR also continued to improve inspector performance

during Phase 3, three weeks later. Clearly, a degree of

permanence has been established for the superiority of KR

during visual inspection.

Inspector sensitivity, in particular, was affected not

only by the presence of KR during training but also by the

degree of task difficulty. The superiority of KR trained

inspectors was evident during the immediate post-test for

both High and Low Difficulty conditions. Furthermore, in

the three week retest (Phase 3) inspectors trained with both

KR and High Difficulty defects continued to improve their

performance, resulting in the highest overall sensitivity at

the end of the experiment.

Inspector sensitivity was apparently a function of both

KR and task difficulty. When paired together, KR and the

High Difficulty task produced higher inspector sensitivity

than KR alone. Since the discriminability between defects

and nondefects was lower in the High Difficulty task,

inspectors committed more errors during task learning.

However, for inspectors receiving KR, these errors were now

known and could be used to improve subsequent performance.

Presumably, each error forced the inspector to reevaluate

and adjust his/her mental model used to detect defects.

While inspectors trained with KR and the High Difficulty
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task were expected to have lower sensitivity than those

performing the Low Difficulty task during training, this

trend was reversed when performing the standard No KR/Low

Difficulty task during Phases 2 and 3. Inspectors trained

on the Low Difficulty task with KR made less errors during

task learning and, therefore, had less opportunities to

update and refine their mental model. When transferred to

Phase 2 without KR, Low Difficulty inspectors possessed a

less refined mental model which lowered sensitivity.

KR utilization appears to partly depend on the level of

task difficulty. In this context, task difficulty is

assumed to be directly related to inspector *effort" since

the more errors, the more updates required to an

individual's mental model, and, therefore, the more effort

required (assuming equally motivated subjects). Therefore,

the ability of KR to produce accurate inspection decisions

is mediated, to some extent, by the level of inspector

effort used during training.

Inspectors trained without KR had expected and

consistent performance trends. Group I inspector's (No

KR/Low Difficulty) sensitivity remained constant between

both phases and probability conditions. For Group II,

inspector performance was expectantly low during training on

High Difficulty defects, however, in subsequent phases
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sensitivity increased to Group I levels and remained stable.

Although Group II inspectors also committed more errors

during training, without KR, these errors could not be used

to improve their mental models and, consequently,

sensitivity was reduced during Phases 2 and 3.

These results support the KR utilization modei advanced

in Chapter 1. Inspector performance as conceptualized by

the SDT parameter, d' , was significantly and consistently

increased in the presence of KR. KR provided critical

information on the characteristics and limits of defective

line segments (defect specification knowledge) by

identifying errors to the inspector and allowing him/her to

successfully distinguish defects from nondefects. This

knowledge forms the basis for the inspector's mental model

for detecting defects. This model may be thought of as a

visual image or "template' which is used to compare each

inspection item and evaluate the degree of 'defectiveness"

present. During inspection, KR is used by the inspector to

adjust his/her template to correspond as closely as possible

to the shortest item that would be reported 'defect". Items

judged shorter than this template will be reported as

nondefects while items judged the same or longer will be

reported as defects. For inspectors trained without KR,

this template is less developed and more variable from trial
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to trial. Inspector sensitivity, therefore, would be

expectantly lower as verified by these experimental results.

The other major SDT parameter used to assess inspector

performance was response bias (B) . As opposed to d' , higher

performance on 2 was associated, not with absolute

magnitude, but rather on optimal placement for a given set

of conditions. As inspectors were consistently transferred

from 0.2 to 0.4 defect probability conditions across the 3

phases, optimal 2 (B*) varied between 4.0 and 1.5. Since at

no time did inspectors exactly match 2', most of the 2

analysis relied on trends toward optimality. For example,

inspectors trained with KR were more likely to shift their

2's in the optimal direction on the second replication of

the trial than NO-KR inspectors. Specifically for KR

inspectors, optimal shifts occurred on 75% of the second

replications while for NO-KR, optimal shifts occurred on

less than 10%. In particular, KR inspectors detecting Low

Difficulty defects were considerably more optimal in 2

placement during training and shifting B's during Phases 1

and 2 than those detecting High Difficulty defects (see

Figure 16).

While KR appeared to contribute toward more optimal

inspection decisions, defect difficulty also had a strong

mediating effect. High Difficulty defects produced very



116

8

DEFECT PROBABILITY

- 0.2 0.4

E 4-
T
A

2

0
IST/I 2ND/I IST/2 2ND/2 IST/3 2ND/3

REPLICATION/PHASE

Figure 16. Replication/Phase X Defect Probability for
Group 111 2



117

consistent, insensitive C's during training regardless of

the presence of KR or probability condition. During Phases

2 and 3, there was a tendency for 2 in the 0.4 probability

condition to become relatively higher or more conservative

than the 0.2 condition, although this difference was much

greater for KR inspectors. This relationship was also

apparent and fairly consistent for Low Difficulty defects

although, again, this difference was much greater for KR

inspectors. The explanation for this result lies in the

consistent presentation of defect probability conditions.

Inspectors performing 2 replications of 0.2 first become

"primed" to the lower defect rate, inhibiting the tendency

to report defects in the 0.4 condition and resulting in a

higher, more conservative B. During training on Low

Difficulty defects, this effect disappears with KR. This

effect is also more pronounced for KR inspectors during

Phases 2 and 3. Apparently, inspectors initially trained

with KR become more insensitive to changes in defect

probability, although training on Low Difficulty defects

permits more 2 optimal shifts on the second replication. It

appears that KR established a very strong bias for the

existing probability conditions that results in nonoptimal
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inspection decisions as defect probabilities change;

however, for a given probability condition, KR inspectors

are more likely to shift their 2's in a more optimal

direction on the second replication than NO-KR inspectors.
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Chapter 6

OVERALL DISCUSSION
AND CONCLUSIONS

In the course of analyzing the data from the three

previous experiments, it was generally assumed that the two

major parameters of SDT, d' and 2, were relatively

independent measures of inspector performance. This

assumption is inherent in the SDT model and was confirmed by

the experimental data. As a result, the inspection skill

reflected by each of these parameters will be discussed

separately within its own model and then integrated within

the conclusions section.

Sensitivity

One major result of this series of experiments was the

clear and consistent finding that KR increased sensitivity,

as measured by d' , of visual inspectors detecting line

length differences on a computer screen. Overall, KR

increased inspector sensitivity by an average of over 23%

compared to NO-KR inspectors. This superiority of KR was

consistent across both defect difficulty and probability
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levels, although Experiment 1 results suggested that the

increase was more dramatic for Low Difficulty defects and

high probability levels.

Experiment 1 results also showed that inspectors had

higher sensitivity for low difficulty defects when they were

preceded by high difficulty defects than when presented

first. Interpreted within attention theory (Lintern and

Wickens, 1987), this result provided evidence that task

learning was enhanced by "training" on a higher difficulty

version of the task, if the source of difficulty directly

contributed to task learning. This finding was confirmed in

Experiment 3 where inspectors trained with KR and High

Difficulty defects attained the highest sensitivity of any

training group.

While the superiority of KR was well established in

the first experiment, Experiment 2 demonstrated that this

advantage could not be explained solely in terms of

inspector motivation. At least part of the KR effect was to

transmit information to the inspector which increased

his/her ability to discriminate defects from nondefects.

This information is believed to be derived from the

inspector's awareness of errors which is then used to make

internal model adjustments and more accurate decisions.
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In a transfer of training paradigm used in Experiment

3, inspector sensitivity was increased both during training

when KR was present and in later sessions when KR was

removed. This superiority of KR was maintained when

inspectors were tested immediately after training and three

weeks later without KR, especially for inspectors trained on

High Difficulty defects. Apparently higher difficulty

levels allowed inspectors to more effectively process KR

information and enhanced task learning.

The basis of any model for explaining KR effects on

sensitivity must address the nature of the inspector's

internal representation of task events. The idea that KR

increases sensitivity by increasing habit strength through

reinforcement (KR) has been discounted and confirmed by the

results of Experiment 2. A more information processing

approach uses the construct of a *perceptual trace' (Adams,

1987) to represent the internal trial by trial model of an

inspector concerning the perceived distinction between

defects and nondefects. During advanced stages of learning,

the perceptual trace may be stored in long term memory as a

'template" which is down loaded at the beginning of an

inspection session. The perceptual trace is conceived of as

a *working copy" of the template in memory and which can be

changed or altered on a trial by trial basis.
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The template develops during the initial stages of

learning when inspectors are simply observing the line

length judgement task. As the inspector practices the task,

the template in memory is down loaded and adjusted as a

perceptual trace. The most sensitive templates have lengths

which are closest to 50% of the length of the viewing area

or, in other words, the shortest defective line segment

possible. With KR comes knowledge of errors and adjustments

of the perceptual trace to correspond more closely to the

50% length. 'Defect* response errors shorten the perceptual

trace and "nondefect" errors lengthen it.

Manipulating task difficulty by varying the

discriminability of defects is a positive influence on

sensitivity, especially when paired with KR. Inspectors

performing higher difficulty versions of the task were

forced to make finer adjustments, enhanced with KR, of their

perceptual trace on a trial by trial basis. The resulting

template was more sensitive than one obtained by only

performing Low Difficulty inspection tasks.

Increasing defect probability had only minor effects on

inspector sensitivity. Although many vigilance studies

predicted improved observer performance with increasing

defect probability (Stroh, 1971) , this improvement was

usually characterized by an increase in HR without
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necessarily checking the corresponding FAR. As a result,

many of these so-called *improvements' in performance may

result in a decrease in 2 rather than a real increase in

sensitivity (Parasuraman and Davies, 1976; Swets, 1977).

The experimental results reported here generally supported

the SDT model assumption that d' and 1 are relatively

independent measures of inspector performance.

Sensitivity results were generally consistent from

Phases 2 to 3. In other words, inspector retention of

sensitivity skill remained essentially unchanged during the

course of the three-week interval between measurements.

Such short term stability in performance is not uncommon

(Goldberg and O'Rourke, 1989). Skill retention was

particularly dramatic for Group IV inspectors (KR/Low

Difficulty defects) whose mean d' during Phase 3 was the

highest recorded during the experiment. The retention of

inspection skill for longer intervals is a topic for future

research.

Response Criterion

Response criterion effects in this experiment were

mixed and less clear-cut than the sensitivity results.

According to the SDT model, an inspector should adjust his
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response criterion, measured by 2, as defect probabilities

and decision payoffs change, while keeping sensitivity

relatively constant. Optimally, an inspector should

decrease B as defect probabilities increase and decision

payoffs favor more hits, and increase B as defect

probabilities decrease and payoffs favor less false alarms.

Prior data, however, showed that human inspectors are

conservative decision makers who adjusted their 2's less

than that normatively expected (Baddeley and Colquhoun,

1969) . There are two primary methods used to assess

response criterion performance: First, observing directional

changes in B (increase or decrease) as probabilities or

payoffs changed without regard to the specific values of B

taken on; and second, converting B values to optimality

scores computed by :B-B':

Experiment 1 results provided solid evidence that

inspectors using KR manipulated B more optimally, both in

terms of directional changes and optimality scores. An

unexpected finding was that B was significantly lower and

more optimal for High Difficulty defects. One

interpretation of this result is that inspectors faced with

higher difficulty tasks experience greater uncertainty about

their decision and have a larger tendency to respond

'defect' on a given trial. This tendency is probably due to
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an inspector's prior expectancy of defects which is high in

the absence of contradictory information. Since inspectors

are not obtaining sufficient probability information from

the more difficult tasks to shift their 2 more optimally,

they are forced to rely on inaccurate and insufficient prior

expectancies (which are usually more liberal) to make their

decisions. The observed result of greater optimality for

High Difficulty defects may be due to levels of defect

probabilities selected rather than any real main effect.

Inspectors with overall lower 2's, regardless of their

knowledge of defect probabilities, will have overall more

optimal performance in spite of being virtually insensitive

to any probability change.

The sequence of difficulty levels disrupted a

adjustments. When the low difficulty task was presented

first, inspectors receiving KR decreased their 2's as defect

probabilities increased in accordance with the SDT model but

not as much as normatively predicted. When the High

Difficulty task was presented first, 2 adjustments were

completely inaccurate with 2's increasing significantly for

NO-KR inspectors and remaining constant with KR as defect

probabilities increased. Apparently, the sensitivity

advantage of Low to High Discriminability Sequence (High to

Low difficulty) does not carry over to response criterion
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performance. Extending the attention theory explanation,

inspecting High Difficulty defects, while providing

inspectors with more opportunities to learn the more subtle

differences between defects and nondefects, failed to

provide a similar advantage for response criterion

performance. This is consistent with the SDT model which

assumes that the parameters d' and 2, and the skills which

underlie their changes, are relatively independent.

Experiment 2 results reinforce the superiority of KR on

response criterion performance. Eoth KR groups had overall

more optimal 2 adjustments than NO-KR inspectors. However,

when all six optimal Z's are plotted, one for each

payoff/defect probability combination, only TRUE-KR

inspectors adjusted their Z's such that all six were not

significantly different from 2'. Varying decision payoffs

was more effective and relevant to inspectors for optimally

adjusting 2 than defect probabilities alone.

Experiment 2 results also showed that NO-KR inspectors

had significantly higher 2 in the 0.4 probability condition.

Initially, inspectors set 2 relatively low anticipating a

high number of defects. This prior expectancy is probably

due to the nature of the task, which was to detect defects.

Without KR, inspectors were unable to obtain current

probability information to optimally adjust 3 for the given
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probability condition. Since inspectors were always

presented with probability sequence 0.2 then 0.4, 2 tended

to be much lower than predicted by the 2- model for the 0.2

probability condition. As the number of defects presented

doubled in the 0.4 condition, inspectors probably became

aware that many of the previous defects reported under the

very liberal initial criteria were actually nondefects. The

result was an attempt to correct perceived errors by a

general inhibition of the defect response and a higher (more

conservative) 2. Higher 2 was also observed in the 0.4

condition during Experiment 1 for NO-KR inspectors in the

High to Low difficulty sequence.

Experiment 3 results tracked inspector 2 performance

through four different training groups, which varied the

presence of KR and difficulty level across the three phases.

The effects of training could then be evaluated immediately

after training and three weeks later on a standard NO-KR/Low

Difficulty task. Across all phases, inspectors trained

without KR had generally lower 2's than KR trained

inspectors, especially for High Difficulty defects. From

the previous discussion, inspectors tend to lower B when

uncertain about a decision and emphasize detecting defects

(hits) . While B increased overall as defect probabilities

increased from 0.2 to 0.4, this trend reversed during the
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Training phase as a result of KR/Low Difficulty trained

inspectors. The superiority of KR coupled with Low

Difficulty defects for producing more optimal 2 adjustments

was again demonstrated.

The effect of inspector training on optimal 1

adjustment was not significant, although performance was

more optimal for the 0.4 defect probability conL!Tion,

especially for NO-KR trained inspectors. Again, a situation

similar to Experiment 1 exists whereby inspectors

experiencing greater uncertainty (with NO-KR) about the

current probability conditions resort to an overall lower

(more liberal) 1 which happens to be closer to 2-, but which

is insensitive to changing probability conditions.

Since Experiment 3 included 2 replications for each

experimental condition, it was possible to more closely

examine a adjustments. The distinction between Local

Probability (LP) knowledge and Cumulative Probability (CU)

knowledge was first made by Vickers, Learly, and Barnes

(1977) in criticizing the ideal observer hypothesis

(Williges, 1976). LP knowledge represents the trial by

trial knowledge of defect probabilities while CP knowledge

represents knowledge of defect probabilities obtained from

the very beginning of the experimental session including

prior expectancies and training.
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During the training phase, which was the only time when

KR and task difficulty manipulations were present, Group III

inspectors (KR/Low Difficulty defects) shifted B in the

optimal direction both within and between probability

conditions. The data showed that B increased between

replications of the 0.2 probability condition and decreased

in both replications of the 0.4 condition. The remaining

training groups had relatively low and insensitive 2's. In

the Phase 2 immediate post-test (NO-KR/Low Difficulty

defects) , Group III inspectors continued to maintain optimal

performance trends, while the 2's for the NO-KR Groups (I

and II) remained low and generally insensitive. Group IV

inspectors, however, experienced a dramatic rise in B from

the end of the last 0.2 replication to the end of the first

0.4 replication. During Phase 3, three weeks later, Group

IV continued this upward trend across conditions. Group III

inspectors also displayed a similar increase in B between

probability conditions, and both experienced a general

flattening of their B's within each probability condition.

Both Groups I and II continued to have very low and

insensitive B's across all probability conditions.

Withdrawing KR apparently caused inspectors to adopt

very conservative (high B) criterion as defect probability

increased from 0.2 to 0.4, especially when trained initially
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on High Difficulty defects. Since KR is believed to be used

by an inspector to update his LP knowledge, when it is no

longer available, an inspector must rely on his perceived

CP knowledge to make a decision. This knowledge is more

accurate for Group III inspectors trained with KR on Low

Difficulty defects. When KR is removed, the superior CP

knowledge allows more optimal decision making as shown in

these results. However, as time goes by, the memory trace

deteriorates and inspectors again move to more conservative

decision making as defect probabilities increase. Group IV

inspectors performing the High Difficulty task with KR, had

the ability to update LP knowledge but lacked the ability to

use it in the High Difficulty condition. Consequently, 2

remained fairly constant during Phase 1. While performing

the NO-KR/Low Difficulty task during Phase 2, Group IV

inspectors initially adopted a liberal criterion without KR

for the 0.2 condition. However, by the end of the first

replication of the 0.4 condition, inspectors now performing

the Low Difficulty task realized that many previously

identified *defects' were false alarms and in an attempt to

correct for these errors, inspectors increased 2 to

compensate. The result was a general tendency to inhibit
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the 'defect' response and increase 2 are defect

probabilities increased. This trend remained consistent

during Phase 3, three weeks later.

In general, response criterion results remained

unchanged from Phase 2 to Phase 3. Inspectors tested

immediately after training and again three weeks later

showed little change in response criterion performance. In

fact, any small changes observed were usually in the

positive direction. However, deterioration of inspection

skill over longer retention intervals may be more important.

Inspector Latency

The results of this experiment showed inconsistent

effects on RT. In Experiment 1, KR clearly resulted in

faster RT's for both task difficulty levels, although the

effect was more dramatic for High Difficulty defects. On

the other hand, RT's were significantly slower for High

Difficulty defects when presented first compared to after

Low Difficulty defects. RT's were overall slower for High

Difficulty defects.

Inspector RT was not significantly effected by any of

the experimental variables in Experiment 2. Mean RT was

faster for both KR groups compared to NO-KR, although the
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difference was not significant. The KR X Defect Probability

interaction approached significance suggesting that KR

lowered RT more for 0.2 compared to 0.4 defect probability

conditions.

In Experiment 3, KR trained inspectors had overall

faster RT's than NO-KR, especially for Low Difficulty

defects. RT's were also significantly faster in Phase 3 and

for 0.4 defect probability. This reduction in RT as defect

probabilities increased was only observed for NO-KR

inspectors. As inspectors progressed through the phases,

NO-KR inspectors tended to decrease RT's while KR inspectors

tended to increase, although the changes were small and

nonsignificant.

The most consistent finding in the above experiments is

that KR generally reduced the tin.. to make an inspection

decision. The superior template developed from KR can be

used to make faster as well as more accurate inspection

decisions. No-KR inspectors are forced to compare line

segments with either external reference points or very

imprecise internal representations. In either case, more

time is taken on average to make a decision compared to the

time needed to make a single comparison against one very

accurate defect template.
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The effect of task difficulty on RT is inconclusive.

For example, Group I inspectors in Experiment 3 had

significantly slower RT's than Group II even though Group II

inspected higher difficulty defects. It seems that RT's

under some circumstances may be effected by inspector

arousal which can be assumed to be lower for Low Difficulty

defects and lower defect probability levels. However,

increased sensitivity with KR is generally accompanied by

faster RT's.

Conclusions

Based on results of the 3 experiments discussed above,

a clearer understanding of KR utilization in visual

inspection has been obtained. Ten broad conclusions can be

integrated within a general model of inspector performance:

1. KR improved inspector sensitivity d') by making

inspectors aware of errors which forced template

adjustments and resulted in more accurate decisions.

2. KR resulted in faster inspector decisions as the

superior template reduced the number of individual

operations needed, and hence, the time necessary to make a

decision.
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3. KR provided local probability information used to

shift 2 in the more optimal direction as defect

probabilities increased.

4. Removal of KR maintained the sensitivity effect

while criterion placement was disrupted for High Difficulty

defects.

5. High task difficulty, as manipulated by defect

discriminability, resulted in higher sensitivity with KR but

less optimal 2 shifts as probabilities increased.

6. Manipulating decision payoffs was more effective in

optimally adjusting 2 than defect probabilities.

7. No-KR inspectors tended to increase 2 as defect

probabilities increased from 0.2 to 0.4.

8. Defect probabilities had minimal effect on

inspector sensitivity.

9. Inspector sensitivity (d') and response criterion

(B) were relatively independent measures of inspection

performance.

10. Inspection skill retention did not deteriorate

after 3 weeks.

Based on the above conclusions, a model of KR

utilization is proposed which distinguishes sensitivity from

response criterion knowledge and local probability from

cumulative probability knowledge. Figure 17 shows one idea
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of how these constructs can be combined and structured to

explain the experimental results obtained. Inspection items

are perceived by a human inspector and the sensory

information (visual, in this case) flows into working memory

via some type of processor. For the line segment detection

task used here, activated areas of long term memory, which

include information germane to the task such as perceived

prior probabilities and visual templates stored, are also

down-loaded to working memory. The visual information

obtained from an inspection item is compared to the template

stored in memory to determine if the line segment is long

enough to be called a defect. In addition, perceived

probabilities are also being considered before the actual

decision is made. If the sensory information is compelling,

the inspector will probably base his decision primarily on

this information alone. If the information is uncertain,

perceived probabilities will become more important.

Inspectors generally base their decision tendencies on their

cumulative probability knowledge unless local probability

knowledge is available, usually through KR.

When No-KR or High Difficulty defects are present,

inspectors are unable to adequately develop or use local

probability knowledge. As a result, inspection decisions
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are based primarily on cumulative probability knowledge

which consists of an amalgamation of previous experiences

(e.g., prior expectations and training stored in memory.

Most inspectors initially set 1 low at the outset of

the experiment due to the prior expectation that detection

of defects is more important than false alarms. If the

inspector received KR, 2 quickly recovered to reflect the

ongoing defect rate and also adapted to increases in defect

probability, for Low Difficulty defects. For High

Difficulty defects, LP knowledge was disrupted due to

greater attention given to sensitivity performance and 2

remained low and insensitive to defect probability changes.

Without KR, 2 increased as defect probabilities increase, in

conflict with the ideal observer hypothesis. As the number

of defects increased in the 0.4 probability condition,

inspectors corrected for their initially overly liberal 2 by

inhibiting the 'defect" response and increasing 2.

In addition, once KR is removed, inspectors trained on

High Difficulty defects tend to become more conservative

decision makers as defect probabilities increase. Since

defect probabilities in this experiment were always

presented as increasing from 0.2 to 0.4, inspectors may be

primed by the previously low defect rate to respond more

conservatively even when the number of defects increased.
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Having been trained with KR, these inspectors are now

deprived of the only information source they had to make

decisions. When training also involved Low Difficulty

defects, inspectors were able to more efficiently learn to

use LP knowledge and shift 2 more optimally even when KR was

removed (although this ability seemed to degrade somewhat

during Phase 3). However, when training also involved High

Difficulty defects, inspectors' abilities to develop LP

knowledge and accurately shift 2 during training were

severely degraded. When KR was removed and defects became

easier, these inspectors tried to replace the information

they were lacking by drawing on CP knowledge which contained

mostly low probability information from the first two 0.2

trials. When defect probability increased to 0.4,

inspectors ignored any LP knowledge available from the

easier defects and relied completely on lower probability

contents of CP knowledge, resulting in higher 2.

Thus, KR provided information used by the inspector to

not only manipulate 2 optimally based on the ongoing defect

rate, but to also shift B more optimally as defect

probabilities increased. However, increasing task

difficulty may negate this advantage. The interaction

between task difficulty and KR is complex and further

research is necessary.
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Appendix A

STATISTICAL MODEL

The ANOVA model used in these experiments was a "mixed'

model with both between-subject (nested) and within-subject

(blocked) variables (Neter, Waserman, and Kutner, 1985; p.

1021). KR groups were always treated as between-subject

variables to avoid the carry-over effects inherent in going

from KR to NO-KR. Within-subject levels were

counterbalanced where appropriate. Defect probability

levels were not counterbalanced since a stated objective was

to examine inspector performance as quality deteriorates and

defect probability increases.

Experiment 1

This was a four-factor experiment with Factors A and B

(KR, Difficulty Level Sequence, respectively) treated as

between-subject factors and Factors C and D (Task

Difficulty, Defect Probability, respectively) within-subject

and completely crossed. Five subjects were assigned to each

of four groups with no other replications.
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Assuming fixed treatment, random subject effects, and

no treatment X subject interactions, the appropriate model

is:

Ytjui. U ..... + Ai + Bi + Csc + Di + (AB).j + (AC)1 k +

(BC)jk + (BD)ji + (CD),., + (ABC)%.jk + (ABD)ta, +

(BCD)jkix + (ACD),±ici_ + (ABCD) jci + pm( ,.) + e( cirnjm

where:

U .... = overall constant

At = constant such that ZA. = 0

Bi = constant such that 7Bi = 0

Ck = constant such that ICk = 0

D, = constant such that ID, = 0

All interaction terms: [(AB),,, (AC)k, ] also

represent constants subject to the restriction that the

sum of all terms over each level of variables included

[.(AB) j over i and I(AB),j over j, . . I = 0.

p tj3 + e(,jkir,) are independent and N(O. o") and N(O,

a) respectively.

Experiment 2

This was a three-factor study with Factor A (KR)

between subject and Factors B and C (Payoff and Defect

Probability, respectively) within subject and completely

crossed with the sequence of Payoff conditions
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counterbalanced across subjects. Six subjects were randomly

assigned to each of three groups with no replications.

Assuming fixed treatment, random subject effects, and

no treatment X subject interactions, the appropriate model

is:

Yijki = U.... + A, + Bj + Ck + (AB).j + (AC)i k + (BC)jk

+ (ABC) tik + p1(1) + e(iik1,

where:

U... = overall constant

At = constant such that TA 1 = 0

Bi = constant such that TB. = 0

Ck = constant such that ZCk = 0

All interaction terms: [C(AB)Lj , (AC),.k, (BC)jk,
(ABC) tjk also represent constants subject to the
restriction that the sum of all terms over each level
of variables included [T(AB),j over i and Z(AB)Lj over
J.2 = 0.
pici, + ectJki) are independent and N(0, 9, and N(0,
a' respectively.

Experiment 3

This was a three factor study with Factor A (Training

Group) between subject and Factors B and C (Phase and Defect

Probability, respectively) within subject. Five subjects

were randomly assigned to each of four groups with two

replications in each condition.
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Assuming fixed treatment, random subject effects, and

no treatment X subject interactions, the appropriate model

is:

U.... + At + Bi + C3- + (AB)±j + (AC),k +
(BC)jc + (ABC)i.jk + pi(i) + e<likim,

where:

U... = overall constant

A, = constant such that ZA, = 0

Bi = constant such that ZB4 = 0

Ck = constant such that !Cu = 0

All interaction terms: [(AB)ij, (AC),k, (BC)jk,

(ABC),±k] also represent constants subject to the

restriction that the sum of all terms over each level

of variables included [Z(AB)1 4 over i and Z(AB)tj over

j, . ] = 0.

pici, + ectjklm) are independent and N(O, a,) and N(O,

a) , respectively.
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Appendix B

ANOVA AND SDT MODEL ASSUMPTIONS

ANOVA Assumptions

The ANOVA assumptions of normality and equality of

variance for the error terms was confirmed using a residual

analysis (Montgomery, 1984; p. 85). If residuals are

plotted against fitted values, the result should be a

structureless plot of residuals about the 0 axis. This

indicates constant variance in error terms. To check the

normality assumption, residuals are plotted on a rectangular

coordinate system against their corresponding z scores. If

the normality assumption holds true, the points should fall

roughly along a straight line.

Since both hit rate and false alarm rate were the basic

measure from which all other measures were derived, they

were selected as the dependent measures for checking the

ANOVA model assumptions.

Figures 18 and 19 show the residual plots against

fitted values for Experiments 1 through 3 for hit rate and

false alarm rate respectively.

Figures 20 and 21 show the residual plot against

normalized residuals for Experiments 1 tarough 3 for hit
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rate and false alarm rate respectively. An examination of

these plots shows that the ANOVA assumptions for hit rate

and false alarm rate are satisfied. The residual versus

fitted values plots were structureless for all three

experiments (R2 values from regression = 0.0%) with little

evidence of a particular pattern. All plots of residuals

versus normalized residuals fell along a straight line

confirming the normality assumption. For HR, the R values

for Experiments 1 - 3 were 98.7%, 97.0%, and 98.0%,

respectively. For FAR, these values were 99.5%, 95.8%, and

96.8%. The hypothesis of normality was accepted since the

corresponding correlation coefficients exceeded the critical

value based on a test for normality described in Minitab,

(1988; p. 63).
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SDT Assumptions

SDT has significantly contributed to our knowledge of

inspection performance by providing a framework for

obtaining a measure of inspector sensitivity that is free

from the contaminating effects of response bias. Within

this framework, d' remains constant as a measure of

inspector sensitivity for a given defect, while the

inspector's response criterion as measured by 2 is free to

fluctuate based on the probabilities and payoffs of various

decision outcomes. However, this result is only true if the

both the nondefect and defect distributions are normal and

have equal variance. Baker (1975) recommended converting

hit rate and false alarm rate to z scores and plotting these

values on rectangular coordinates. If the normality

assumption is met, the data points should fall along a

straight line. In addition, if the slope of the line equals

1 then changes in FAR z scores produce equal changes in HR z

scores and the two distributions can be assumed to have

equal variance.

To check the model assumptions, z scores for HR and FAR

are plotted for a given level of inspector sensitivity. In

Experiment 2, for example, each of the 3 KR groups

maintained a constant d' as both payoffs and defect
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probabilities changed. Within a particular group, it is

possible to check the how changes in HR z scores compare to

changes in FAR z scores. Figures 22-24 show the plots of

these z scores for each group. The scatterplots show

fitted lines of positive slope, based on the regression

analysis, for all 3 groups. The slopes of these lines,

however, were less than 1. This means that the two

distributions did not have the same variance. In

particular, the variance of the defect distribution was

higher than the variance of the nondefect distribution.

This is not surprising since the defect distribution was

based on a smaller number of observations, hence the

greater variance. However, this violation was not large

enough to interfere with the assumed independence of d' and

2. Therefore, interpretation of the data within the SDT

framework is possible, but caution is required.
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The regression equation is
C23 = - 0.008 + 0.471 C24

Predictor Coef Sidev t-ratio p
Constant -0.0078 0.1422 -0.05 0.957
C24 0.4708 0.1513 3.11 0.004

s = 0.8534 R-sq = 22.2% R-sq(adj) 19.9%

Analysis of Variance

SOURCE OF SS MS F P
Regression 1 7.0505 7.0505 9.68 0.004
Error 34 24.7623 0.7283
Total 35 31.8128

Figure 22. Plot and Regression Analysis of Normalized Hit
Rates and False Alarm Rates for NO-KR Inspectors
in Experiment 2
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Constant -0.0132 0.1328 -0.10 0.922
C34 0.5494 0.1411 3.89 0.000

s = 0.7967 R-sq - 30.8% R-sq(adj) = 28.8%

Amalysts of Varilnct

SOURCE OF SS MS F p
Reresslon 1 9.6175 9.6175 15.15 0.000

Error 34 21.5817 0.6348
Total 35 31.1992

Figure 23. Plot and Regression Analysis of Normalized Hit

Rates and False Alarm Rates for TRUE-KR

Inspectors in Experiment 2
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Figure 24. Plot and Regression Analysis of Normalized Hit

Rates and False Alarm Rates for FALSE-KR
Inspectors in Experiment 2
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To further test the assumptions of the SDT model, HR

and FAR values in Experiment 3 were converted to z scores

and plotted for each Training Group during Phases 2 and 3.

Figures 25-28 show that the best fitting lines had positive

slopes (less than 1) within each training group. Both

experiments satisfied the major assumptions of the SDT model

and, therefore, the parameters d' and 1 are interpretable

for these data.
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Figure 25. Plot and Regression analysis of Normalized Hit
Rates and False Alarm Rates for Group I
Inspectors in Experiment 3
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.96 0.6669 0.1187 5.62 0.000
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Analysis of Variance

SOURCE OF SS MF F 0

Recression 1 16.173 16.173 31.59 0.000

Error 38 19.457 0.512

Total 39 35.630

Figure 27. Plot and Regression analysis of Normalized hit

Rates and False Alarm Rates for Group III

Inspectors in Experiment 3
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Figure 28. Plot and Regression analysis of Normalized hit
Rates and False Alarm Rates for Group IV
Inspectors in Experiment 3
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